

SEELEY G. MLIDD LIBRARY
LAWRENCE UNIVERSITY
Appleton, Wisconsin

A HANDBOOK ON CURVES AND THEIR PROPERTIES

by
ROBERT C. YATES
United States Military Acadony

$$
\text { J. W. EDWARDS - ANN ARBOR - } 1947
$$

NOTATION

$x, y=$ Ractangular Coordinate日.
$\rho, r^{\prime}=$ Polau Coordinate, (Radius Veator).
0 - Parametar or Polar Coordinate.
$4=$ Tnclination of Tangent.
$\mathrm{f}=$ Anelo between a Tangent and the Radiue Vector to Point el Tanganoy.

Copyright 1947 by Robert C. Yates

Lithoprinted by Edwards Brothers, Inc Ann Arbor, Michigan U. S. A.

CONTENTS

Astrold 1
Cardicid. 4
Cassinten Curves. 12
Catenary 12
Caustics. 21
crecle. 26
Clssold26
31
34
Concho1d. 34
Cones 36
Conics56
60
65
Cubic Parabola.
Curvature
Curvature 65
Deltold 71
Bavelopes 75
Ep1- and Hypo-Cycloids. 81
Evolutes. 86
Exponential Curves. 93
Folium of Descartes 98
Functions with Discontinuous Properties 100
Glissettes. 108
Hyperbolic Functions. 113
Instantaneous Center of Rotation and the Construction of Some Tengents. 119
Intrineic Squations 123
Inversion 127
Involutes 135
Isoptic Ourves. 138
Kleroid 141
Lemnisate of Bernoul31 143
Limacon of Pascal 148

Nephrold. 152
Preallel Cunves 155
. 160
Pedal Curves, 166
Pedal Equetions 160
Pursult Curve 170
Redial Curves 172
Roulettes 175
Sem1-Cubic Parabola 185
Sketching
10als 206
. 217
metnix 222
「rigoncmetric Funations 225
. 233
W1tch of Agnes 1 237

PREFACE

This volume proposes to supply to student and teacher quick reference on properties of plane curves. Rather than a syatemstic or comprehensive atudy of curve theory, is a collection of information which might be found seful in the olssaroon and in engineering practice. The alphabeticel arrangement is given to aid in the eearch for this information.

It seamed necessary to inoomporate sections on such topics as Evolutes, Curve Sketching, and Intrinsic Equations to make the items and properties listed under varlous curves readily underatandable. If the book ia uaed as a text, it wauld be desirsble to present the materisl in the following order:

WATYSTS ani SYBTEMS

Caust1ce

Curvature
Involones
Brolutea
Junctions with Deecontinuous

Propertiee

11asottee
Inetantansous Conters
Inetantansous Contera
ntrinaio Bquations
Inveraion
Involutes
Ieoptio Curves
Parallel Curves
Pedal Curvee
Peisl Equatione
Red lal Curves
Roulettee
Sketch1ng
Trocholda

II
CURVIE
Astrold
Cariliold
Cassinian Curves Catenary
Circle
C1seold
Conchold
Conlce
Cubic parabola
Cjelotd
Deltold
Ep1- and Hypocyclota
Exponantial Curvee
Folium of Descartee Hyperbolito Functions Kierola
Lemulecate
L1macon
Nephroid
Eureuit Ourvee
Semi-cubic Perabola
Spirale
Stropino1d
Stropiold
Prigonocetrio Punctione
Witch

PREFACE

Since derivations of all properties would make the volume cumbersome and somewhet devoid of general interest, explanations are frequently omitted. It is thought possible for the reader to supply many of them without difflculty.

Space is provided occsaionally for the reader to insert notee, proors, and references of $h 1 s$ own and thus fit the material to his particular interests.

It is with pleasure that the author aoknowledges valuable assistance in the composition of this work. Mr. H. I. Guerd oriticized the manuscript and offored helpful suggestione; Mr. Charles Roth and Mr. William Bobalke assisted in the preparation of the drewings; Mr. Thomes Vecchio lent expert clerical sid. Appreciation 13 elso due jolonel Harris Jones who encouraged the project.

Robert C. Yates West Point, N. Y. June 1947

ASTROID

ISTORY: The Cyclosdal curves, Inoluding the Aatroid, were discovered by Roemer (2674) in his search for the beat form for gear teeth. Double generation was first noticed by Daniel Bernoulli in 1725.

1. DESCRIPTION: The Astroid 1s A hypocyclold of four cusps: The locus of a point P on a circle rolling upon the inside of another with radius four times as large.

(a)

Fig. 1
(b)

Double Generation: It may also be described by a point on a ofrcie of radius $\frac{38}{4}$ rolling upon the $1 n s 1 d e$ of a
fixed efrcle of radius ㅌ. (See Kpicycioida)

$$
\begin{aligned}
& \text { 2. EQUARIONS: } \\
& x^{\frac{2}{3}}+y^{\frac{2}{3}}=e^{3}
\end{aligned}\left\{\begin{array}{l}
x=a \cos ^{3} t=\left(\frac{a}{4}\right)(3 \cos t+\cos 3) \\
y=a \sin ^{3} t=\left(\frac{a}{4}\right)(3 \sin t-\sin 3 t)
\end{array}\right\} \begin{aligned}
& r^{2}=a^{2}-3 p^{2} \quad R^{2}+4 a^{2}=\frac{9 a^{2}}{4} \\
& \varepsilon=\left(\frac{3 a}{4}\right) \cdot \cos 2 \psi
\end{aligned}
$$

5. METRIOAL PROPERTIES:
$I=6 a$
$A=\left(\frac{3}{8}\right)\left(\pi a^{2}\right)$
$V_{x}=\left(\frac{32}{105}\right)\left(\pi \mathrm{a}^{3}\right)$
$z_{x}=\left(\frac{12}{5}\right)\left(\pi \mathrm{a}^{2}\right)$
$\varphi=\pi-t$

$$
R=\left(\frac{39}{2}\right) \cdot 81 \pi 2 t=3 \sqrt[3]{8 \times y}
$$

4. GENERAL ITEMS:
(a) Its evolute is another Astroid. [See Evolutes 4(b).]
(b) It is the envelope of a family of Ellipses, the sum of whose axes 1s constant. (F1g. 2b)

(a)

Fig. 2
(b)
(0) The length of 1ts tangent intercepted between the congents 1 z const. Thus it is the envelcpe of a Trammel of Archimedes. (FAg. 2a)
(c) Its onthoptic with respect to its center is the ourve

$$
r^{2}=\left(\frac{a^{2}}{2}\right) \cdot \cos ^{2} 2 \theta .
$$

(o) Tangent Construction: (Iig. 1) Through P draw the cincle with center on the circle of radius $\frac{3 a}{4}$ which
Is tangent to the fixed ofrcle as at T (Ieft-hanc figure). Since the inctantaneous center of rotation of P is T, IT is normsl to the curve at P.

BIBLIOGRAPHY

Edwerds, J.: Calculus, Macmillen (1892) 337. Salmon, G.: H1gher Plane Curves, Dublin (1879) 278. Wheleitner, H.: Spezielle ebone Kurver, Leさpzis (1908). Willianson, B.: Differential Caloulus, Longmans, Green (1895) 339.

Section on Eplcycloids, herein.

CARDIOID

HISTORY: The Cardiosd is a member of the family of Cycloldel Curves, flrst studied by Roemer (1674) in an inveatigation for the best form of geer teeth.

1. DESCRIPILON: The Cardioid 1 a an Epicyclaid of one cusp: the locus of a point P of a circle rolling upon the outside of another of equal size. (Fig. 3a)

Doubie Generation: ($F 1 g$. 3b). Let the curve be genereted by the point P on the rolling circle of redius \underline{B}. Dray ET', OT'F, and PT' to T. Drew F'P to D and the olrcle through I, P, D. Since angle $D P M=\frac{\pi}{2}$, this last oirele has $D T$ as diameter. Now, $P D$ is parallel to T'E and from similar triengles, $\mathrm{DE}=2 \mathrm{a}$. Noreover, arc TH $=a \Leftrightarrow=$ arc T'P = arc $T^{\prime} X$. Accordingly,

$$
\text { arc } \operatorname{mT} \mathrm{X}=2 \mathrm{~A} \theta=\operatorname{arc} \mathrm{TP}
$$

Thus the ourve may be described as an Eplcycloid in two wsys: by a circle of radius \underline{a}, of by one of radiua 2 a, ways: n ging shown upon a fixed olrcle of radius a.
2. EQUATIONS:
$\left(x^{2}+y^{2} \mp 28 x\right)^{2}=4 s^{2}\left(x^{2}+y^{2}\right)($ Or1g1n at eusp).
$r=2 a(1 \pm \cos \theta), r=2 a(1 \pm \sin \theta)(0 \operatorname{lig} \ln$ st cusp) .
$g\left(r^{2}-a^{2}\right)=8 p^{2}$. (Or1gin at center of fixed ofrole).
$\left\{\begin{array}{l}x=a(2 \cos t-\cos 2 t) \\ y=a(2 \sin t-\sin 2 t), z=a\left(2 e^{1 t}-e^{21 t}\right) .\end{array}\right.$
$r^{3}=4 a p^{2} . \quad a=8 a \cdot \cos \left(\frac{\Phi}{3}\right)$.
$9 R^{2}+s^{2}=64 a^{2}$.
3. METRICAL PROPERTIRS:

$$
\begin{array}{rc}
L=16 a & A=6 \pi a^{2} \\
Y=\left(\frac{3}{2}\right) t & \Sigma_{x}=\left(\frac{128}{5}\right)\left(\pi a^{2}\right) \\
R=\frac{\sqrt[3]{3} \sqrt{2 a r}}{} \text { for } r=a(1-\cos \theta) .
\end{array}
$$

4. GENERAL ITEMI:
(a) It is the inverse of a parabola with respect to 1ts Pocus.
(b) Its evolute is another cardioid.
(c) It is the pedal of a circle with respect to a point on the circle.
(d) It is a special 11macon: $r=A+b$ coa θ with $a=b$.
(e) It is the caustic of a circle with radiant point on the circle.
(f) The tangents at points whose angles, measured at the cusp, differ by $\frac{2 \pi}{3}$ are parallel.
(g) The sum of the distances from the cusp to the four intersections with an aroitrary ine is conatant.
(h) Cam. If the aardiold be pivoted at the gusp and rotated with constant angular velooity, a pin, constrained to a fixed straight line and bearing on the Cardiold, will move with simple harmonic motion. Thus for

$$
\begin{aligned}
& r=a(1+\cos \theta), \\
& \dot{r}=-(a \operatorname{ain} \theta) \dot{\theta}, \\
& \underline{\mu}=-(a \cos \theta) \dot{\theta}^{a}-(a \sin \theta) \ddot{\theta} .
\end{aligned}
$$

If $\dot{b}=k$, a constant:

$$
n^{n}=-k^{2}(e \cos \theta)=-k^{2}(r-a)
$$

or

$$
\frac{d^{2}}{d t^{2}}(r-a)=-k^{2}(r-a)
$$

the adfferential equation characterizing the motion of any point of the pin.

Fig. 4

Pig. 5
(1) The curve is the locus of the point P of two similar (Proportionel) crossed parallelograms, Joined \& s shown, with points 0 and A. fixed.
$A B=O D=b ; A O=B D=C P=A ; B P=D C=C$ $a^{2}=b c$. and
At a.ll times, angle $P C O=\theta=$ angle COX. Any point rigialy attached to CP describes a Limacon.

BIBLIOGRAPEY

Keown and Faires: Mechanism, MoGraw Hill (1931). Morley snd Morley: Inversive Geometry, Oim (1935) 239. Yates, R. C.: Mool. A, Mathematical Sketch and Model Book, I. S. U. Press, (1941) 182.

CASSINIAN CURVES

HISTORY: Studied by Giovami Domenico Cessini in 1680 in connection with the neletive motions of earth and sun.

1. DESCRTPMION: A Cassimian Curve is the locus of a point P the produbt of whose distances froll two fixed points $\mathrm{F}_{1}, \mathrm{~F}_{2}$ is constant (here $=\mathrm{k}^{2}$).

Fig. 6
2. ECOATIONS:

$$
\begin{aligned}
& {\left[(x-a)^{2}+y^{2}\right] \cdot\left[(x+a)^{2}+y^{2}\right]=k^{4} .} \\
& r^{4}+a^{4}-2 r^{2} a^{2} \cos 2 \theta=k^{4} . \\
& {\left[P_{1}=(-a, 0) \quad F_{2}=(a, 0)\right]}
\end{aligned}
$$

3. VETRICAL PROPERTIES:
(See Section on Lemniscate)
4. GENIRAL ITEMS:
(a) Let b be the inner pediue of the generating circle of a torus. The section formed by a plane paralliol to the axis of the torus lel to the axis of the torus and distant a units from $1 t$ ia a Cassinian. If $b=a$, the section is a Lemincate.
(b) The set of Oassinisn Curves

$$
\begin{gathered}
\left(x^{2}+y^{2}\right)^{2}+A\left(y^{2}-x^{2}\right) \\
+B=0, B \neq 0
\end{gathered}
$$

Inverts into itself.
(c) If $k=a$, the Cassinien is the Lemniscate of Bemoul11: $r^{2}=2 \varepsilon^{2}$ cos 2θ, a curve that is the inverse and pedal, with respect to its center, of a Rectangular Hyperbola.
(d) The points P and P^{\prime} of the inkage shown in Fig. 8 deacribe the curve. Here $A D=A O=O B=a$;
$D C=C Q=E O=O C=\frac{C}{2} ; C P=P E=E P^{t}=P^{\prime} C=d$.

FIg. 8

CASSINIAN CURVES

stes of Q and P be (ρ, θ) and (r, θ), Let the coondinates of Q and P be (p, θ) snd (p, θ), respectively. Since O, D, and Q lie on e circle wlt
center at C, the Itnes $D O$ and $Q Q$ are always at right engles. Thus

$$
(O Q)^{2}=(D Q)^{2}-(D O)^{2} \text { or } p^{2}=o^{2}-4 a^{2} \sin ^{2} \theta
$$

The attached Peaucellier cell inverts the point Q to P under the property

$$
r(r-\rho)=d^{2}-\frac{c^{2}}{4}
$$

Thus, eliminating ρ between the last two relations:

$$
\left(d^{2}-\frac{d^{2}}{4}-r^{2}\right)^{2}=r^{2} c^{2}-4 r^{2} s^{2} s^{2} n^{2} \theta
$$

or, in rectangular ooordinates:

$$
\left(x^{2}+y^{2}\right)^{2}+A x^{2}+B y^{2}+C=0
$$

a curve that may be identified as a Cassinian if $d=\sqrt{a^{2}-\frac{c^{2}}{4}}$.
(e) The loous of the flex points of a family of confocal Casainian ourves 18 a Lemniscate of Bernoulil ($\mathrm{F}=\mathrm{g}, 6$).
5. POINTWISE CONSIRUCTION:

P15. 9

$$
\left(F_{2} X\right) \cdot\left(F_{2} Y\right)=k^{2}
$$

Let the fool, Fig. 9, be FI, F_{2}; the constant produet k^{2}. Ley off $\mathrm{F}_{2} \mathrm{C}=\mathrm{k}$ perpendiculas to $\mathrm{F}_{2} \mathrm{~F}_{2}$. Draw the ofrcle with center F_{1} and any padius FIX. Drew CX and Its perpendiculsr CY. Then
and thue $F_{1} X$ and $F_{3} Y$ are focel radil (measured from F_{1} and Fz) of a point P on the curve. (From aymmetry, four and F_{2}) constructible from these two radi1.) M is the points are $F_{1} \mathbb{F}_{2}$ and A and B are extreme pointa of the curves

BIBLIOGRAPHY

Selmon, G.: H1gher Plane Gurves, Dublin (2879) 44,126 W111son, I. N.: Graphiog, Graphics Press (1909) 74. Williemson, B.: Calculus, Longmans, Green (1895) $233,333$. Yates, R. C.: Moo13, A Mathematical Sketch and Model $300 \mathrm{k}, \mathrm{L} . \mathrm{S} . \mathrm{U}$. Preas (1941) 186.

CATENARY

HISHORY: Galileo was the first to investigate the Catenay which he mistook for a Parsbola. James Bernoull1 in 1691 obtainad 1 ts true form and gave some of its properties.

1. DESCRTPIION: The Catenary is the form assumed by a perfectly flexible inextenalble chain of uniform denaity hanging from two supponts not in the same vertical ine.

FIG. 10
2. BQUATIONS: If I is the tension at any point P,
$7 \cos \varphi=k a\} \quad g=B y^{\prime}=a \tan \varphi ; a R=B^{2}+s^{2}$ $y=a \cdot \cosh \left(\frac{x}{a}\right)=\left(\frac{a}{2}\right)\left\langle e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right\rangle ; y^{2}=a^{2}+s^{2}$.
3. METRTCAL PROPERTIES:
$A=E \cdot s=2($ ares triangle $P G B) \quad \Sigma_{x}=\pi(y s+a x)$
$R=\frac{y^{2}}{a}$

$$
v_{x}=\left(\frac{\theta}{2}\right) \cdot \Sigma_{x}
$$

$$
N=-R
$$

4. GBNERAL IIENS:
(a) The tangent at any point (x, y) is also tangent to a elrele of redius a, with center at $(x, 0)$.
$\left[y^{\prime}=\sinh \left(\frac{x}{a}\right)= \pm \frac{\sqrt{y^{2}-a^{2}}}{A}\right]$.
(b) Jangents dram to the curves $y=e^{\frac{x}{a}}, y=\theta^{-\frac{x}{a}}$, $y=a \cosh \frac{x}{a}$ at points baving the same abscissa are concurrent.
(c) The path of B, an involute of the eatenary, is the Tractrix. (Since $\tan \theta=\frac{\varepsilon}{B}, P B=s$).
(d) As a roulette, it is the locus of the foçus of a parabola rolling along a line.
(e) It is a plane section of the surface of least aroa (a soap film catenoid) sparning two circular disks, Fig. 1la. (This is the only ainimal surface of revolution.)

(a)

Fig. 11
(b)

CATENARY

(f) It is a plane section of a sail bounded by two rods with the wind perpendsculser to the plane of the rods, such that the pressure on any element of the 3811 is normal to the element and proportional to the square of the velocity, Fig. 1lb. (See Routh)

BIBLIOGRAPHY

Encyclopaedia Britannica, 14th Bd. under "Curves, Special".
Routh, B. J.: Aralytical Statics, and Ed. (1896) I \& 458, p. 310 .

Salmon, G.: H1gher Plane Curves, Dublin (1879) 287. Wallis: Edinburgh means. XIV, 625.

CAUSTICS

HISTORY: Csustics were finst introduced and studied by Tsch1rnhausen in 1682. Other contributors were Fuygens, Quetelet, Lagrange, and Cayley.

1. A coustic ourve is the envelope of light rays, emitted from a radiant point source S, after reelection or refraction by a given curve $f=0$. The caustics by reflection and refraction are called os.tacaustic and discaus-
tic, respectively.

31g. 12
2. An orthotomie curve (or secondary caustic) is the locus of the point \bar{S}, the reflection of S in the tangent at I. (See also Pedal Curves.)
3. The Instantaneous center of motion of \bar{S} is T. Thus the coustic 18 the envelope of normsls, TQ, to the orthotomic; $1 . e .$, the crustic is the evolute of the orthotomic.
4. The locus of P is the pedal of the reflecting curve with respect to 8 . Thus the orthotomic is a ourve similar to the pedel with double its linear dimensione.
5. The Catacaustic of a circle 1 s the evolute of a limacon whose pole is the radiant point. With usual x, y axes [radius a, radiant point $(c, 0)$], the equation of the caustic 1s:
$\left[\left(4 c^{2}-a^{2}\right)\left(x^{2}+y^{2}\right)-2 a^{2} c x-a^{2} c^{2}\right]^{3}-27 a^{4} c^{2} y^{2}\left(x^{2}+y^{2}-c^{2}\right)^{2}=0$.
For various radiant points 0 , these exhibit the folZowing forms:

In two partioular cases, the caustics of a circle of radius E may be determined in the following elementary wey:

(a)

Fig. 14

(b)

WIth the source 8 st \propto, the incident and reflected reys make angles θ with the normal at T. Thus the fixed circle $O(A)$ of radius a/2 hss its arc $A B$ equal to the are $A P$ of the circle through A, P, T of radius $a / 4$. The point P of this latter oircle generates the Nephrold and the reflected ray TPQ 13 1ts tangent (AP 18 perpendicular to TP).
These are the bright curves seen on the surface of coffee in a cup or upon the table inside of a napkin ring.
7. The Qeustios by Rerraction (Diacaustios) at a Line L. ST is incident, $\frac{\text { QT }}{\text { refrected, and } \overline{\mathrm{S}} \text { is the reflection of }}$ S in L. Produce TQ to meet the variable circle drawn through S, Q, and \bar{S} in P. Let the angles of incidence and refraction be θ_{1} and θ_{2} and $\mu=\frac{\sin \theta_{2}}{\sin \theta_{2}}$ be the index of refraction. Nov $S P$ and $\bar{S} P$ make equal angles with the refracted rey PQT. Thus in pessing from a dense to a rare medium ($\theta_{2}<\theta_{2}$) and vice versa ($\theta_{1}>\theta_{2}$):

F4. 15

$$
\mu=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{A S}{P S}=\frac{A S}{P \bar{S}} .
$$

$\mu=\frac{A S+A \bar{S}}{P S+P \bar{S}}=\frac{S \bar{S}}{P S+P \bar{S}} . \quad \mu=\frac{A \bar{S}-A S}{P S}-P S=\frac{S \bar{S}}{P \bar{S}-P S}$.
Thus, since $\bar{S} \bar{S}$ is constant,

$$
P S+P \bar{S}=S \bar{S} / 15
$$

a constant. The locus of P Is then an ellipse with s, $\overline{\mathrm{S}}$ ss foci, mafor axts $3 \bar{s} / 4$, eccentricity μ, and with PQT as its normel. The onvelope of these rays PQT nomal to the ellipse, 1s its evclute, the caustio.
(F1g. 16)

Thus, oince $S \bar{S}$ is constant,

$$
P \bar{S}-P S=S \bar{S} / 1 /
$$

a constant. The locus of P
is then an hyperbola with
3 , \bar{S} as foci, major ax1s
SS $/ \mu$, eocentrioity μ, and witin PQT as its nomal. The envelope of these rays ?QT, normel to the ayperbola is its evolute, the caustic.
(F18. 17)

Fig. 16
FIg. 17
8. SOME EXAMPLES:
(a) If the radiant point is the foous of a parabole, the ceustic of the evolute of thet parabols is the evolute of another parabola.

CAUSTICS

(b) If the radiant point is at the vertex of a reflecting parabola, the caustic is the evolute of a c1ssoid.
(c) If the radiant point is the center of a circle, the caustic of the involute of thet circle is the evolute of the spirsl of Archimedes.
(d) If the radiant point is the center of a conic, the reflected rays are all normal to the quartic $r^{2}=A \cos 2 \theta+B$, having the radiant point as double point.
(e) If the radient point moves along a fixed diameter of a reflecting circle of radius \mathfrak{a}, the two cusps of the caustic which do not lle on that diameter move on the curve $r=A \cdot \cos \left(\frac{\theta}{2}\right)$.
(f) If the radiant point is the pole of the reflecting spiral $r=a e^{\theta}$ ota a, the caustic is a similar spiral.
(g) If light rays parallel to the y-axis fall upon the reflecting curve $y=e^{x}$, the caustic is a catenary.
(h) The orthotomic of a parabola for rays perpendicular to its axis is the simusoidal spiral
$r=a \cdot \sec ^{2}\left(\frac{\theta}{3}\right)$.

BIBLITOGRAPHY

American Mathematical Monthly: $28(1921)$ 182,187. Ceyley, A.: "Memoir on Caustics", Philosophicel Transactions (1856).
Hesth, R. S.: Geometricel Optics (1895) 105.
Salmon, G.: H1gher Plane Curves, Dublin (1879) 98.

(a)

F1g. 18

F1g. 19
(a) The Problem of

Apollonius is that of constmucting a circle tangent to three ρ^{1} ven non-cosxal circlea (generally eight solutions). The problem 1s reducible (see Inversion) to that of drawiny a cirole through three specifled points.

P1g. 20
(d) Mreina. A series of eircles each drawn tangent to two given non-intersecting circlea and to another member of the series is called a twain. It is not to be

Fig. 21
expected that euch a series generally will close upon itself. If such is the case, however, the serles is called a Ste1ner chain.
Ary Steiner chain can be inverted Into a Steiner chain tangent to two concentric circles.
Two concentrio oirclea admit a Steiner chain of \underline{n} circles, encircling the common center k times if the angle subtended at the center by each ofrole of the train 1s commensurable with 360°, 1.e., equal to $\left(\frac{k}{n}\right)\left(360^{\circ}\right)$.

If two circles admit a Steiner chain, they admit an inflnitude of such chains.
(e) Arbelos. The I'gure bounded by the semicircula: ares $A X B$, BYC, AZC (A, B, C collinear) 13 the arbelos or shoemsker's knife. Studied by Archimedes, some of its properties sre:

1. $\overparen{\mathrm{AXB}}+\overparen{\mathrm{BYC}}=\overparen{\mathrm{A} Z \mathrm{C}}$.
2. Its area equals

Fig. 22
the area of the ofrcie on BZ as a diameter.
3. Circles inscribed in the three-sided 1 igures $A B Z$, CBZ are equal with diameter $\frac{(A B)(B C)}{(A C)}$
(AC)
4. (Pappus) Consider a train of circlea c_{0}, c_{1}, c_{2}, ... all tangent to the eircles on $A C$ and $A B$ (co is the circle $B C$). If r_{n} is the radius of c_{n}, and h_{n} the distance from its center to $A B C$,
$h_{n}=2 n \cdot r_{n}$ (Invert, using A as center.)

BIBLIOGRAPHY

Deus, P. F.: College Geometry, Prentice-Hall (1941).
Johnson, R. A.: Modern Geometry, Houghton Mifflin (1929) 113.

Mackay, J. S.: Pnoc. Ed. Math. Soc. III (1884) 2. Shively, L. S.: Modern Geometry, John Wiley (1939) 151.

CISSOID

HISTORY: Dlocles (between 250-100 BC) utflized the ordinary Cisaoid (e word from the Greek meaning "1vy") in finding two mean proportionals between glven lengthe a, b (i.e., finding x such that a, $a x$, $a x^{2}$, b form a geometrio progression. This 1 is the cuberroot problem since $x^{9}=\frac{b}{a}$). Generalizations follow. As early as 1689 , J. C. Sturm, in his Nothesis Enuclesta, gave a mechanical devioe for the construction of the C1ssoid of Diocles.

1. DESCRIPTION: Given two curves $y=f_{1}(x), y=f_{2}(x)$ and the fixed point 0 . Let Q and F be the intersections of a variable line through 0 with the given curves. The locus of P on this secent such that

$$
O P=(O R)-(O Q)=O R
$$

is the Clasold of the two curves with respect to 0 . If the two curves are A line and a circle, the ordinary family of Cissoids is genersted. The discussion following is restricted to this family.

Let the two given curves be a fixed circle of radius B, center at E and pessing through 0 , and the line I perpendicular to ox at $2(a+b)$ distence from 0 . The ordinary Clssold is the locus of P on the variable secant through O such that $O P=r=Q R$.

The gereration may be effected by the intersection P of the secant $O R$ and the circle of radius ε tangent to I st F ss this circle rolls upon I. (Fig . 24)

The surve has a cusg
if $\mathrm{b}=0$ (the Cisscid of Dlocles); a double point if the rolling circle pesses between 0 and K. Its asymptote is the line L.

IFs. 24
2. EQUAIIONS:
$r=2(a+b) \sec \theta-2 a \cos \forall . \quad y^{2}=\frac{x^{2}(2 b-x)}{[x-2(a+b)]}$

$$
\left\{\begin{array}{l}
x=\frac{2 \cdot\left[b+(a+b) t^{2}\right]}{\left(1+t^{2}\right)} \\
y=\frac{2 \cdot\left[b t+(a+b) t^{3}\right]}{\left(1+t^{2}\right)}
\end{array}\right.
$$

(If $b=0: r=2 a \cdot \sin \theta \tan \theta ; y^{2}=\frac{x^{3}}{(2 a-x)}$, the Claso1d of D1ocies).

- METRICAL PFOPERTIES:

C1ssold of Dlocies: $V($ rev. about asymp. $)=2 \pi^{2} a^{3}$
$\overline{\mathrm{x}}$ (area betw. curve and ssymp.) $=\frac{5 a}{3}$
A (area betw. ourve and asymp.) $=\pi \mathrm{s}^{2}$
4. GENERAL THEMS:
(a) A family of these
 Cissolds mey be generated by the Peaucellier cell arrengement show. Since $(O Q)(Q P)=k^{2}=-1$, $2 c \cdot \cos \theta(2 c \cdot \cos \theta+r)=1$
or
$r=\left(\frac{1}{2 c}\right) \sec \theta-20 \cdot \cos \theta$, which, for $c<\Rightarrow \frac{1}{2}$ has, respectively, no loog, a cusp, a 100 p .

Fig. 25
(b) The Inverse of the family in (a) is, if $2^{\prime \prime} \rho=1$, (center of inversion at 0)

$$
y^{2}+x^{2}\left(1-4 c^{2}\right)=20 x
$$

an Ellipse, a Parabola, an Hyperbola if $\mathrm{c}<->\frac{1}{2}$, respectively. (See Conics, 17).

(c) C1sso1ds may be generated by the carpenter's square with right angle at Q (Newton). The fixed point A of the square moves along CA witlle the other edge of the square passes through B, a fized point on the Ine BC perpendicular to
$A C$. The path of P, a flxed point on $A O$ desoribes the eurve.
Let $A F=O B=D$, and $B C=A Q=28$, with 0 the origin of coordinates. Then $A B=2 a \cdot s e c \theta$ and

$$
r=2 a \cdot \sec \theta-2 b \cdot \cos \theta .
$$

The point Q describes a Strophold (See Strophoid 5e).
(c) Rangent Construction: (See F1g. 26) A has the direction of the line $C A$ while the point of the square st B moves in the direction $B Q$. Normals to $A C$ and $B Q$ at A and B respectively meet in H the center of rotation. HP is thus normal to the path of P
(e) The Clssoid $y^{2}=\frac{x^{3}}{(a-x)}$ is the pedal of the Parabola $y^{2}=-4 a x$ with respect to ite vertex.
(f) It is a spectal Rieroid.
(g) The Cissoid as a roulette: One of the curves is the locus of the vertex of a parabole which rolls upon an equal fixed one. The commen tangent reflects the flxed vertex into the position of the moving vertex. The locus is thus a curve similar to the pedal with respact to the vertex.
(h) The Cissold of an algebraic curve and a line is itself algebraic.
(in Maseata a a Jine and a crecte wItl Lespect ic ikt sertio it the Gonchoid of Micomedes.
(f) The Strophoid is the Cissold of a earcle al d a Ine through ste certer with respect to a polnt of the circie. The Cissotd of Digoles is used in the design of planing hulls (See Lord).
(k) The Cissoid of 2 concentrio cincles vith respect to their center is a clucie.
(2) The Clssoid of a paln of parallel lines is a line.

BIELIOGRAPHY

H11ton, H.: Plane Algebrafe Gurves, Oxford (1932) 175 , 205.

Wheleltner, H.: Speaielle ebere Kui en, Zelpsig (1908) 37If.
Salmon, G.: Hlgher Plane Curves, Dublin (1879) 18eff.
Nlewonclowek1, B.: Coura de GBométrie Analyt'que, Par1t (1895) II, 125.

Lond, I'risaj: The Neval Architecture pif Plaring Hulls, Cornell Maritime Press (1946) 77

CONCHOID

HISTORY: Nicomedes (about 225 BC) utilized the Conchoid (from the Greek meaning "she $11-11 k e^{\text {" }}$) In finding two mean proportionals between two glven, lengths (the cube-root problem).

1. DRSCRIPTION: Given a curve and a fixed point 0 . Points P_{1} and P_{2} are taken on E variable line through 0 at distances $\pm k$ from the intersection of the line and curve. The locus of F_{1} and F_{2} 1s the Conchoid of the given ourve with respect to 0 .

Fig. 27
The Conchoid α^{\prime} Nicomedes is the Conchoid of a Line.

F18. 28
The Imacon of Pascal is a Conchoid of a circle, wh th the fixed point upon the circle.
2. EQUATIONS:

General: Let the given curve be $r=f(\theta)$ and O be the origin. The Conohoid is

$$
r=f(\theta) \pm k
$$

The Conchoid of Nicomedes (for the figure above) is:

$$
r=a \cdot \csc \theta \pm k, \quad\left(x^{2}+y^{2}\right)(y-a)^{2}=x^{2} y^{2},
$$

Which has a double point, a cusp, or an isolated point if a $<=>\mathrm{k}$, respectively.
3. METRICAL PROPERTIES:
4. GENERAL ITEMS:
(a) Tangent Construction. (See Fig. 28). Tho perpendicular to $A \bar{X}$ at A meets the perpendicular to $O A$ at in the point H, the center of rotation of any point of OA. Accordingly, $H P_{1}$ and $H P_{2}$ are normals to the curve.
(b) The Trisection of an Angle XOY by the marked muler involves the Conchofd of Nicomedes. Let P and
Q be the two marike on the ruler $2 k$ unita apart. Construct BC parallel to oX such that $O B=k$. Draw $B A$ perpendicular to BC. Let F move along AB while the edge of the ruler passes through 0 . The point Q traces a. Conchoid and when this point falls on $B C$ the angle is triseoted.

F1g. 29
(c) The Conchoid of Nicomedes is a special Kleroic.

BIBLIOGRAPHY

Mortiz, R. B.: Univ. of Weshington Publications, (1923)
[for Concholds of $r=\cos (p / q) \theta$].
Hilton, H.: Plane Algebraic Curves, Oxford (1932).

CONES

1. DESCRIPTION: A cone is a ruled surfece all of whos. ine eloments pass through a fixed point called the vertex.
2. EQUATIONS: GIven two surfaces $f(x, y, z)=0$, $\{(x, y, z\rangle=0$. The cone through thels common curve with vertex V at (a, b, c) 1s found as follows.

Let $P_{1}:\left(X_{1}, Y_{1}, Z_{2}\right)$ be on the given curve and

Fig. 30
$P:(x, y, z)$ a point on the cone which lies collifnear WIth V and F_{1}. Then

$$
\begin{aligned}
& \begin{array}{l}
x-B=k\left(x_{1}-a\right), \\
y-b=k\left(y_{1}-b\right), \\
z-c=k\left(z_{2}-c\right),
\end{array} \\
& \text { or all values of } k . \\
& \left\{\begin{array}{l}
f\left(x_{1}, y_{2}, z_{2}\right)=0 \\
g\left(x_{2}, y_{1}, z_{2}\right)=0
\end{array}\right.
\end{aligned}
$$

produces the cone:

$$
\left\{\begin{array}{l}
{\left[\frac{(x-a)}{k}+a, \frac{(y-b)}{k}+b, \frac{(z-c)}{k}+c\right]=0} \\
\delta\left[\frac{(x-a)}{k}+a, \frac{(y-b)}{k}+b, \frac{(z-c)}{k}+c\right]=0
\end{array}\right.
$$

Since this condition must exist for s"1 values k, the eliuination of ic y_{i} elds the rectanguiar equetion of the core.

[^0]3. EXANPIES: The cone with vertex at the origin contain-
\[

$$
\begin{aligned}
& \text { ing the curve } \\
& \left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } - 2 z = 0 } \\
{ z - 1 = 0 }
\end{array} \text { 16 } \left\{\begin{array}{l}
x^{2}+y^{2}-2 k z=0 \\
z-k=0
\end{array} \text { or } x^{2}+y^{2}-2 z^{2}=0 .\right.\right.
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { The cone with vertex at the orlgin contalning the curve } \\
& \left\{\begin{array} { l }
{ x ^ { 2 } - y ^ { 2 } + y ^ { 2 } - 4 y = 0 } \\
{ z ^ { 2 } - 4 y = 0 }
\end{array} \quad \left\{\begin{array}{l}
x^{2}-2 x+y^{2}-4 i x y=0 \\
z^{2}-4 k y=0
\end{array} \text { or } 2 x^{2} y-x x^{2}+2 y^{3}-2 y z^{2}=0 .\right.\right.
\end{aligned}
$$

The cone with vertex at $(1,2,3)$ containing the curve

or $(x-1)^{2}+(y-2)^{2}+2(x-1)(z-3)+4(z-2)(z-3)-3 \cdot(z-3)^{2}=0$.

BIBLIOGRAPHY

Smith, Gale, Neelley: Analytic Ceometry, Ginn (1938) 284.

CONICS

HISTORY: The Conics seem to have been discovered by Menaechmus (a Greek, $0.375-325 \mathrm{BC}$), futor to Alexander the Great. They were apparently concelved in an attempt to solve the three famous problems of trisecting the angle, duplioating the cube, and souaring the olrcle. Instead of cutting a single flxed cone with a variable plane, Menaechmus took a fixed intersecting plane and cones of varying vertex angle, obtaining from those having angles < $=>90^{\circ}$ the Ellipse, Parabols, and Hyperbols respectively. Apollonius is credited with the definition of the plane loous given first below. The ingenious Pascel announced his remarksble theorem on inscribed hexagons in 1639 before the age of 16 .

1. DRSCRIPTION: A Conic is the locus of a point which moves so that the ratio of 1 te distance from a flxed. point (the focus) divided by 1te distance from a flxed Ine (the directrix) is a constant (the eccentricity e), ell motion in the plane of focus and directrix (Apollonius). If $e<, m,>1$, the locus 1 an Ellipse, a Parabols, an Hyperbola reapectively.

Fig. 31
$y^{2}+\left(1-\theta^{2}\right) x^{2}-2 k x+k^{2}=0, \quad r=\frac{\text { ek }}{(1 \pm e \sin \theta)}$ $x=\frac{e k}{(1 \pm \theta \cos \theta)}$.
2. SECTIONS OF A CONE: Conglder the right circular cone of angle β cut by a plane APFD vilch makes an angle $\alpha \mathrm{W}$ th the base of the cone. Let P be an arbitrarily chosen point upon the1r curve of intersection and let a sphere be inscribed to the cone touching the cutting plane at F. The element through P touches the sphere st B. Then

$$
\mathrm{PF}=\mathrm{PB}
$$

Let ACBD be the plane containing the olrcle of intersection of cone and sphere. Then if PC is perpendicular to this plane,
$P C=(P A) \sin \alpha=(P B) \sin \beta=$ $(P F) \sin \beta$,
or

$$
\frac{(P F)}{(P A)}=\frac{\sin \alpha}{\sin \beta}=e, a
$$

constant as P varies (α, β constant). The curve of intersection is thus a conic according to the definition of Apollonius. A focus and corresponding directrix are F and $A D$, the intersection of the two planes.

NOIE: It Is evident now that the three types of conscs may be had in elther of two ways:
(A) By fixing the cone and varying the intersecting plene (β constant and a arbitrary); or
(B) By fixing the plane and varying the right circular cone (α constant and β arbitrary).
With either choice, the intersecting curve is
an Ellipse if $\alpha<\beta$,
a Parabola if $\alpha=\beta$,
an Hyperbola if $\alpha>\beta$
3. PARTIOULAR TYPE DEMONSTRATIONS:

Fig. 33

It seems truiy remarikable that these spheres, inscribed to the cone and 1 ta cutting plane, should touch this plane at the foot of the conic - and that the directrices are the intersections of cutting plane and plene of the intersection of cone and sphere.
4. THE DISCRTMINANT: Consider the general equetion of the Conic:

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 B y+F=0
$$

and the famlily of lines $y=m x$.

Fig. 34

This family meets the conic in pointe whose absoissas are given by the form:
$\left(A+2 B m+C m^{2}\right) x^{2}+2(D+E m) x+F=0$.

If there are lines of the family which cut the curve in one and only one point,* then

$$
\mathrm{A}+2 \mathrm{Bm}+\mathrm{Cm}^{2}=0 \quad \text { or } \mathrm{m}=
$$

The Parabole 1.8 the conic for which only one line of the family cuts the curve just once. That is, for which:

$$
B^{2}-A C=0
$$

The Hyperbols is the conic for which two and only two I1nes out the curve fust once. That 18 , for which:

$$
B^{2}-A C>0
$$

The Ellipse is the conic for which no line of the famlly cuts the curve Just once. That 1a, for which:

$$
B^{2}-A C<0
$$

A point of tangency here is counted algebralcally as two points, the "point st $\boldsymbol{\infty}^{\prime \prime}$ is excluded.
5. OPTICAL PROPRRTY: A simple demonatration of this outstanding feature of the Conies is glven here in the case of the BIIfpse. Similar treatmente may be presented for the Hyperbola and Parabola.

Fig. 35

The locus of points P for Which $\mathrm{F}_{1} \mathrm{P}+\mathrm{F}_{2} \mathrm{P}=2 \mathrm{a}, \mathrm{a}$ constant, is an Ellipse. Let the tangent to the curve be drawn at P. Now P is the only point of the tangent 11 ne for which $\mathrm{F}_{2} \mathrm{P}+\mathrm{F}_{2} \mathrm{P}$ is a minimum. For, consider any other polint Q. Then

$$
\begin{gathered}
F_{1} Q+F_{2} Q>F_{1} R+F_{2} R=2 Q= \\
F_{2} P+F_{2} P .
\end{gathered}
$$

Sut if $\mathrm{F}_{1} \mathrm{P}+\mathrm{F}_{2} \mathrm{P}$ is a minimum, P must be collinear with F_{1} and \bar{F}_{2}, the reflection of F_{2} in the
tangent. Accurdingly, bince $a=y$, the targent bisects the angle formed by the fooal radij
0. PUTES AND POLARS: ConsLder the Conle:

$$
A x^{2}+2 B x y+C y^{2}+2 D y+2 E y+F=0
$$

and the point $P_{i}(h, k)$.
The If ne (whose equation has the form of a tengent to the conic):
$A h x+B(h y+k x)+0 k y$
$+D(x+h)+B(y+k)$
$+F=0 . \ldots . \ldots . .(1)$
15 the polar of P with sespect to the conic and P la Its pole.

Let tangents be drawn from P to the curve, neet-

718. 36
$\operatorname{In} g \perp t \operatorname{In}\left(x_{1}, y_{1}\right)$ and
$\left(x_{2}, y_{2}\right)$. Their equations are satiafiod by (b, k) thus:
$A h x_{1}+B\left(h y_{1}+k x_{2}\right)+C k x_{1}+D\left(x_{1}+h\right)+E\left(y_{1}+k\right)+F=0$
$A h x_{2}+E\left(h y_{2}+k x_{2}\right)+C k x_{z}+D\left(x_{2}+k\right)+\mathbb{E}\left(y_{a}+k\right)+F=0$.
Evidently, the polar given by (I) conteins these points of tangency since s ts equetion reduces to these 1 denti
 if P is a point from which tancufft thati (by drawn, its polar is their chord of contezs

Let (a, b) be a point on itheypolar of p. mite

This expresses also the congithon that thy polan of (a, b) pesses through (h, k). shy
\%itril
 I =tier wowts. - a puitt rove on a fixed I'ine, tis 10. lav pase-s chint-1, a J'ixed point, and corversely.

Note that the leation of P relative to the conlo does If af eet the reality of Lus polas. Note also that if P ILes of, the sonic, Its polar 19 the tangent at F .

1. HARMUNIC SECTION: Let the line throuch P_{z} meet the coric in Q_{1}, Q_{2} and its polar in P_{2}. These four points form an hammonic set and

Fig. 37 $\frac{\left(P_{1} Q_{1}\right)}{\left(Q_{2} P_{2}\right)}=\frac{\left(Q_{2} P_{L}\right)}{\left(Q_{2} P_{2}\right)}$, 1.e., Q_{1}
and Q_{2} divide the segment $P_{1} P_{2}$ intermally ard extermally in the same ratio, and vice veras. In other words, given the conle and a flxed point P_{2} : A varigble line through P_{2} meeta the conic in $\mathrm{Q}_{1}, \mathrm{Q}_{2}$. The locus of P_{1} which, with P_{2}, divides $Q_{1} Q_{2}$ hamonically is the polar of P_{2}.

The segments $P_{2} Q_{1}, P_{2} P_{1}, P_{2} Q_{2}$ are in hamonic progres-

8. THE POLAR OF P PASSES THROUGH R AND S, THE INTERSECTIONS OF THE CROSS-TOINS OF SECANMS IHROUGH P. (F18, 38a)

(a)

(b)

Let the two arbitrary secants be axes of rererence (not recessarlly rectangular) and let the conlo (F1g. 38b)

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 B y+F=0
$$

have intercepts $a_{1}, a_{2} ; b_{1}, b_{2} g$ iven as the roots of

$$
A x^{2}+2 D x+F=0 \quad \text { and } \quad C y^{2}+2 F y+F=0
$$

From these

$$
\begin{aligned}
& \frac{1}{a_{1}}+\frac{1}{a_{2}}=-\frac{2 D}{F} \quad \text { or } \quad D=\left(-\frac{F}{2}\right)\left(\frac{1}{B_{1}}+\frac{1}{a_{2}}\right), \\
& \frac{1}{b_{1}}+\frac{1}{b_{2}}=-\frac{2 R}{F} \quad \text { or } \quad E=\left(-\frac{F}{2}\right)\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}\right) .
\end{aligned}
$$

Now the poler of $P(0,0)$ is $D x+E y+F=0$
or

$$
x\left(\frac{1}{8_{1}}+\frac{1}{a_{3}}\right)+y\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}\right)-2=0 .
$$

The cross-joins are:

$$
\frac{x}{a_{2}}+\frac{y}{b_{2}}=1 \text { and } \frac{x}{a_{2}}+\frac{y}{b_{2}}=1 .
$$

The family of lines through their intersection R :

$$
\frac{x}{a_{1}}+\frac{y}{b_{z}}-1+\lambda\left(\frac{x}{B_{2}}+\frac{y}{b_{1}}-1\right)=0 .
$$

contains, for $\lambda=1$, the polar of P. Aocordingly, the polar of P pesses through R , and by inference, through S .

This affords a simple and classicel construction by the atraightedge slone of the tangents to a conlc from a point P :

Fig. 39
Draw arbitrary secants from P and, by the intersections of thetr cross-joins, establish the polar of P. This polar meets the conic in the points of tangency.
9. PASCAL'S THEOREM:

One of the most far resching and productive theorems In ell of geonetry is concerned with hexagone inscribed to conics. Let the verticea of the hexagon be numbered arbitrerily*
$1,2,3,1^{\prime}, 2^{\prime}, 3^{\prime}$. The intersections $\underline{X}, \underline{\underline{y}}, \underline{Z}$ of the foins ($1,2^{\prime} ; 2^{\prime} 2$)
$\left(1,3^{\prime} ; 1^{\prime}, 3\right)\left(2,3^{\prime} ; 2^{\prime}, 3\right)$ are collinear, and conversely. Apparently simple in character, 1t nevertheless has over 400 corollarien inportent to the structure of synthetic geometry. Several of these follow.

Fig. 40

* By romumbering, many such Pascal lines correspond to a single inaerlbed hexagen.

10. POINTWISE CONSTRUCTION OF A CONIC DEFERMINED BY FIVE GIVEN POINTS:

Let the five points be numbered $1, \hat{2}, 3,1^{1}, 2^{1}$. Draw an arbitrary line through I

18. 41 which would meet the conic In the required point 31 . Fstablish the two points $Y, 2$ and the Pascal Inne. This meets $2^{\prime} 3$ in X and finally $2, X$ meets the arbitrary line through 1 in 31. Furtiner points are located in the same way.
11. CONSTHUCTION OF TANGENTS TO A CONIC GIVEN ONLY BY FIVE POINTS:

In labelling the points, consider 1 and 3^{\prime} as havinc merged so that the Iine $1, j^{\prime}$ Ls
 the tangent. Points X, Z ere determined and the Pascal Ifne frewn to meet $2^{\prime}, 3$ in Y. The line from Y to the point $I=3^{2}$ is the required tangent. The tangent at any other point, determined as in (10), 1日 constructed in like fashion.
12. INSCRTBED QUADRILATERALS: The peirs of tengents et opposite vertices, together with the oppoalte sides, of quedrilaterals inscribed to a conic meet in four collinear points.
Thls is recognized as a special case of the inseribed hexagon theorem of Pascal.

P1g. 43
13. INSCRIBED MRIANGIRS: Further restriction on the Pascal hexagon produces A theorem on inscribed triangles. For such iriangles, the tengents at the vertices meet their opposite sides in three collinear points.

P18. 故
14. AEROFLANB DESIGN: The construetion of elliptical sections at right angles to the centor line of B fuselsge is essentially as follows. Construet the conio given three points P_{1}, $\mathrm{P}_{2}, \mathrm{P}_{3}$ and the tangents at two of them. To obtain other points Q or the conlc, draw an arbitrary Pascal Ine through X, the intersection of the given tangents, meeting $P_{1} P_{2}$ in $Y_{;} P_{1} P_{3}$ in Z. Then $Y P_{3}$ and $Z P_{2}$ meet in Q.
FIg. 45
16. CONSTRUCTION AKD GENERATION: (See also Sketohing 2.) The following are a few selected from meny. Explanations are given only where necessary.
(a) String Methods:

Fig. 47
(b) Point-wise Construction:

$\left\{\begin{array}{lll}x=2 & 20 e \\ y= & b & t a n\end{array}\right.$

F1g. 48
(c) Two Bnvelopes:
(1) A ray is drawn from the fixed point F to the fixed circle or line. At thls point of intersection a

Fig. 49
Itne is drawn perpendicular to the ray. The envelope of this latter line is a contc* (See Pedals.)
(11) The fixed point F of a sheet of paper $1 s$ folded over upon the fixed circle or ine. The crease

Fig. 50
so formod envelopes a conic. (See Envelopes.) (Use wax paper.) (Note that 1 and 11 are equivalent.)

[^1](d) Nevtoi 's Method: Besed upon the Ides of two proJective pencils, the following is due to Newton. Tre angles of constant magnitudes have ventices ifxed at A and B. A point of intersection P of two of the 1 r sides mover along a flxed Ine. The point of Intersection Q of their other two sides desortbes a conic through A and B.

F1g. 51
17. ITNKAGE DESCRIPTION: Thic followlng is seleoted from a variety of such
mechantsms (see TOOLS).
For the 3 -bar Innkage shown, forming a variable trapezoid:
$A B=C D=2 a ; A C=B D=2 b ;$ a $>\mathrm{b}$;
$(A D)(B C)=4\left(a^{2}-b^{2}\right)$.
A point P of $C D$ is selected and of $=r$ drewn parellel to $A D$

Fig. 52
and $B C$. OP w111 remsin
paraliel to these lines and so 0 is a fixed point.
Let $O M=c, M T=z$, where M is the mldpoint of $A B$. Then

$$
\begin{aligned}
& A D=2(A T) \cos \theta=2(a+z) \cos \theta, \\
& B C=2(B T) \cos \theta=2(a-z) \cos \theta .
\end{aligned}
$$

The sr product produces:

$$
\left(a^{2}-z^{2}\right) \cos ^{2} \theta=8^{2}-b^{2} .
$$

Combining this with $r^{\prime}=2(c+z) c o s \theta$ there results

$$
\left(\frac{r}{2}-c \cdot \cos \theta\right)^{2}=b^{2}-a^{2} \sin ^{2} \theta
$$

$A s$ the polar equation of the path of P. In rectangular coordinates these. curves are degenerate sextics, each composed of a circle and a curve resembling the figure ∞

If now an inversor OEPFP' be attached as shown in
Fig. 53 so that

$$
r \cdot \rho=2 k \text {, where } \rho=0 P^{1} \text {, }
$$

FIg. 53
the inverse of this set of curves (the locus of P^{\prime}) 18 ;

$$
(k-c \cdot p \cdot \cos \theta)^{2}=b^{2}-a^{2} \cdot p^{2} \cdot \sin ^{2} \theta,
$$

or, in rectangular coordinates:

$$
\left(a^{2}-b^{2}\right) y^{2}-\left(b^{2}-c^{2}\right) x^{2}-2 c \cdot k+x+k^{2}=0
$$

a conic. Since $a>b$, the type depends upon the relative value of c; that is, upon the position of the selected point P :

$$
\begin{array}{ll}
\text { An Ellipse } & \text { if } c>b, \\
\text { A Parabola } & \text { if } c=b, \\
\text { An Hyperbola if } c<b .
\end{array}
$$

For an alternate linkage, see Cissoid, 4.)
28. RADIUS OP CURVAIURE:

For any curve in rectangular coordinates,

Thus

$$
\begin{aligned}
|R|=\left|\frac{\left(1+y^{\prime 2}\right)^{3 / 2}}{y^{\prime \prime}}\right| \text { and } N^{2}=y^{2}\left(1+y^{12}\right) . \\
|R|=\left|\frac{N^{3}}{y^{9} y^{11}}\right|
\end{aligned}
$$

The conic $y^{2}=2 A x+B x^{2}$, where A is the semi-latus rectum, is an Ellipse if $\mathrm{B}<0$, a Parabola if $\mathrm{B}=0$, an Hyperbole if $B>0$. Fere

$$
y y^{\prime}=A+B x, \quad y y^{\prime \prime}+y^{\prime 2}=B, \quad \text { and } y^{3} y^{\prime \prime}+y^{2} y^{r^{2}}=B y^{2}
$$

$$
\text { Thus } \quad y^{3} y^{11}=B y^{2}-(A+B x)^{2}=-A^{2}
$$

sid

$$
|R|=\left|\frac{N^{3}}{A^{2}}\right|
$$

29. PROJECRION OF NORMAL LENGTH UPON A FOCAL RADIUS:

Consider the conics
$P_{1}(1-e \cos \theta)=A, \quad(A=\operatorname{sem} 1-1 a \operatorname{tus}$ rectum $)$.

Fig. 54

Since the normel st P blsects the angle between the focal radi1, we heve for the central conics:

$$
\frac{P_{2} Q}{P_{1} Q}=\frac{P_{2}}{P_{2}}
$$

or, adding 1 to each side of the equation for the Ellipse, subtractiag 1 from each side for the Hyperbole:

$$
\frac{2 c}{F_{1} Q}=\frac{2 B}{\rho_{1}}
$$

Thet is

$$
F_{1} Q=e \cdot p_{1} .
$$

Now 13 H be the foot of the perpendicular from Q upon a focal radius,

$$
F_{1 H}=e p_{1} \cdot \cos \theta
$$

and
$P H=P_{1}-e p_{1} \cdot \cos \theta=A=N \cdot \cos \alpha$.
For the Parsbola, the angles at P and Q are each equal to α and $F_{1} Q=p_{1}$. Thus

$$
P H=p_{1}-p_{2} \cdot \cos \theta=A=N \cdot \cos \alpha
$$

Accordingly,
The projection of the Normel Length upon a focel radus 19 constant and equal to the semi-1atus rectum.
20. CENIER OF CURVATURE:

$$
\begin{array}{ll}
\text { 31nce } & \cos a=\frac{A}{N}, \text { from (29), } \\
\text { and } & |R|=\left|\frac{N^{3}}{A^{2}}\right|, \text { from }(18),
\end{array}
$$

we have

$$
|R|=N \cdot \sec ^{2} a_{1}
$$

Thus to locste the center
of curveture, C, drew the perpendicular to the nommal at Q meeting a focal radius at K. Draw the perpendicular at K the perpendicular at meeting the normei in C. (For the Evolutes of the Conies, see Evolutes, 4.)

F18. 55

BIREIOGRAPHY

Baker, W. N.: Alpebraic Geometry, Bell and Sons (1906) 323.

Brink, R. W.: A F1rst Year of College Methematlos, Appleton Century (1937).
Candy, A. L.: Anslytie Geometry, D. C. Hesth (1900) 155. Graham, John and Cooley: Ansiytic Geometry, PrenticeHe.11 (1936) 207.
N1ewenglowsk1, B.: Cours de Géométrie Analytique, Peris (1895).

Selmon, G.: Conic Sectione, Longmens, Green (1900).
Sanger, R. G.: Synthet1e Projective Geometry, KoGraw H:11 (2939) 66.
Winger, R. M. : Prajective Geometry, D. C. Heath (1923) 112.

Yates, R. C.: Tuols, A Kathematicel Sketch and Model Book, I. S. U. Fress (1942) 174, 180.

CUBIC PARABOLA

HISIORY: Studied particularly by Newton and Leibnitz (1675) who sought a curve khose subnormal 1a Inversely proportional to its ordinate. Morge used the Perabola $y_{3}=x^{3}$ in 1815 to solve every cuiole of the form
$x^{3}+h x+k=0$.
2. DESCRIPTION: The curve is defined by the equetion: $y=A x^{3}+B x^{2}+C x+D=A(x-a)\left(x^{2}+b x+c\right)$.

19. 56
2. GRNBRAL ITEMS:
(8) The Cubio Parsbola has max-min. pointa only if $B^{2}-3 A C>0$.
(b) Its flex point is at $x=\frac{-B}{3 A}$ (a translation of the y-axls by this amount removes the square term and thus selects the mean of the roote as the orlgin).
(c) The curve is symmetricel with respect to its flex point (see b.).
(d) It is a special case of the Pearls of Sluze.
(e) It is used extensively as a transition curve in rellroad engineering.
(1) It is continuous for all values of 3 , with thb esymptotes, cuaps, or double points.
(g) The Evolute of $a^{2} y=x^{3}$ is

$$
\left.30^{2}\left(x^{2}-\frac{9}{125} y^{2}\right)^{2}+\frac{128}{125}, \frac{2}{5} a^{2}-\frac{9}{2} x y\right)\left(\frac{1}{5} a^{4}-\frac{3}{2} a^{2} x y-\frac{243}{400} y^{4}+=6\right.
$$

(h) For $3 a^{2} y=x^{3}, \quad R=\frac{\left(e^{4}+x^{4}\right)^{\frac{3}{2}}}{2 a^{4} x}$
(1) Graphical and Mechant.cal Solutfona:

$$
\text { 1. Replace } x^{3}+h x+k=0 \text { by the system: }
$$

$$
\left\{\begin{array}{l}
y=x^{3} \\
y+3 x+k=0
\end{array}\right.
$$

the absclsses of whose intersections are poots of the given equation. only one Cublc Parabola need be drawn for all cubics, but for each cubic there is a particuLar IIno.

F18. 57
2. Reduce the given cubic $\mathrm{x}_{1}^{3}+h x_{1}+k=0$ by means of the pational trarisformation $x_{1}=\frac{k}{h} \cdot x$ to the form

$$
x^{3}+\pi(x+1)=0 \quad \text { In which } m=\frac{n^{3}}{k^{2}}
$$

*The diboriminant (the equare of the procuct of the dipferencee of the roote takan in paires) of this cuble is:

$$
\Delta=-m^{2}(2\rceil+4(m)
$$

Thus the roota are real and unequal if $m<-\frac{27}{4}$; two are complex If m$\rangle-\frac{27}{4}$; and two on mors are equel if $\mathrm{m}=0$ or $\mathrm{m}=-\frac{27}{4}$.
Thase reglone of the plane (or rangen of m) sare asparated by tha line through $(-1,0)$ tangent to the curve as ahown.

Fig. 58

This may be replaced by the system $\left\{y=x^{2}, y+m(x+1)=0\right\}$. Since the eolution of each cubio here requires only the determination of a partioular slope, a straightedge may be attached to the point $(-1,0)$ with the y -axis acoommodating the quantity .
(j) Triseotion of the Angle:

Given the angle $A O B=30$. If $O A$ be the radius of the unlt circle, then the projection a 18 cos 30 . It is proposed to f ind $\cos \theta$ and thus θ Itself.

Since

F1g. 59
$\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$,
we have, in setting
$x=\cos \theta: 4 x^{2}-3 x-8=0$
or the equivelent syetern: $y=4 x^{3}, y-3 x-a=0$. Thus, for trisection of
30, draw the line through $(0, a)$ parsllel to the
fixed line L of slope 3 .
This meets the curve
$y=4 x^{3}$ at P. The IIne
from P perpendicular to
$O B$ meete the unit oirole in T and deterwinea the required distance x. The triseoting line is OT.

BIBLIOGRAPHY

Yates, R. C.: Tools, A Mathemation Sketoh and Model Book, I. S. U. Press (1942).
Yates, R. C.: The Trisection Problem, The Franklin Press (1942).

CURVATURE

1. DEFINITION: Curvature is a measure of the rate of change of the angle of Inclination of the tangent with respect to the arc length. Precisely,

$$
K=\frac{d \varphi}{d s}
$$

$$
R=\frac{1}{K}
$$

At a maximum or mintmum point $K=y^{\prime \prime}(o r \infty, 0)$; at a flex if $\mathcal{J}^{\prime \prime}$ is continuous, $\bar{K}=0$ (or s); at a cusp, $\mathrm{R}=0$. (See Bvolutes).
2. OSCULATING CIRCLE:

The osculating ofrcle of

F1g. 60 a curve is the ofrele having $(x, y), y^{\prime}$ and $y^{\prime \prime}$ in common with the curve. That is, the relations:
$(x-\alpha)^{2}+(y-j)^{2}=r^{2}$
$(x-a)+(y-\beta) y^{\prime}=0$ $\left(1+y^{\prime 2}\right)+(y-3) y^{\prime \prime}=0$ must subsist for values of x, y, y^{\prime}, y^{n} belonging to the curve. These conditions give:
$\Sigma=R, \quad \alpha=x-R \cdot \ln \phi, \quad \beta=y+R \cdot \cos \varphi$,
where $\varphi 1 . s$ the tangential angle. Thls is also called the CIrcle of Curvature.
3. OURVATURE AT THE ORIGTN (Newton): We consider only national slgebraic curves having the x-axis as a tangent at the orleir. Let A be the center of a circle tangent to the curve at 0 and intersecting the curve again at $P:(x, y)$. As P approsches 0 , the circle approsches the osculating circle. Now $B P=x$ is a mean

It'oproithonal between $O B=y$ and $B C=2 R-y$, where
$A O=R$. That 13 ,

$$
2 R-y=\frac{x^{2}}{y}, \text { and }
$$

$R_{0}=\operatorname{Limit}_{\mathrm{P} \rightarrow 0} \mathrm{R}=\underset{x \rightarrow 0}{\operatorname{Lim} \leq t}\left(\frac{x^{2}}{2 y}\right)$.

FIg. 61

Dxamples: The Famabola $2 y=x^{2}$ has Ro $_{0}=1$.

$$
\begin{aligned}
& \text { The Cubic } y^{2}=x^{3} \text { on } \frac{x^{2}}{2 y}=\sqrt{\frac{y}{2}} \text { has } \mathrm{R}_{0}=0 \text {. } \\
& \text { The Quintie } \mathrm{y}^{2}=\mathrm{x}^{5} \text { on } \frac{x^{2}}{2 y}=\frac{1}{2 \sqrt{x}} \text { hes } \mathrm{R}_{0}=\infty \text {. }
\end{aligned}
$$

Generelly, curvature at the orlgin 1 s independent of all coefficients except those of y and x^{2}.
If the curve be given in polar coordinates, through the pole and tangent to the polar axis, there is in like fashion (see F1g. 61):

$$
\begin{aligned}
& 2 R \cdot \sin \theta=r \quad \text { or } \quad R=\frac{r}{2 \sin \theta} ; \\
& R_{0}=\operatorname{Lim}_{\theta \rightarrow 0}\left(\frac{r}{2 \sin \theta}\right)=\operatorname{LimLt}_{\theta \rightarrow 0}\left(\frac{T}{2 \theta}\right)
\end{aligned}
$$

Examples: The Oircle
$r=a \cdot \sin \theta$ or $\frac{r}{2 t}=\frac{A(\sin \theta)}{2 \theta}$ has $R_{0}=\frac{a}{2}$
The Cardiotd
$r=1-\cos \theta$ or $\frac{r}{2 \theta}=\frac{(1-\cos \theta)}{2 \theta}$ has $R_{0}=0$.
4. CURVAGURE IN VARIOUS COORDINATE SYSITRMS:
$R^{2}=\frac{\left(1+y^{2}\right)^{3}}{y^{\prime 2}}$.
$x^{2}=\left(\frac{a^{2} x}{d a^{2}}\right)^{2}+\left(\frac{a^{2} y}{d a^{2}}\right)^{2}$.
$R_{0}=\operatorname{Lim} S t\left(\frac{x^{2}}{2 y}\right)$.
$\pi=0$
$\boldsymbol{z}=0$
$B^{2}=\frac{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{3}}{(\dot{x} \dot{y}-\dot{x} \dot{y})^{2}}$
[Ninere the curve is
$x=x(t), y=y(t)$ and
. $\left.=\frac{d}{d t}\right]$.
$R=\frac{\nabla^{2}}{a_{n}}$, whers v, a_{n} ard
magnitudes of velocity and normal nogeleration of a moring point.
$\mathrm{B}=\mathrm{d} 4 / \mathrm{ds}$.
$R=x\left(\frac{d m}{d p}\right)$
$R=p+\frac{d^{2} p}{d q^{2}}$
$\mathrm{B}^{\mathrm{F}}=\frac{\left(\mathrm{r}^{2}+r^{\prime 2}\right)^{3}}{\left(r^{2}+2 r^{2}-r r^{\prime \prime}\right)^{2}} \quad$ (poiar \quad corrde.) $R^{2}=\frac{\left(f_{x}^{2}+f_{y}^{2}\right)^{3}}{\left(f_{x x^{p} y^{2}}-2 f_{x y^{f} x^{p} y}+f_{y y^{r}} x^{2}\right)^{2}}$, $[$ where the curve io $f(x, y)=0]$. $R^{2}=\frac{H^{9}}{y^{3} \cdot y^{11}}$, where
$N^{2}=y^{2}\left(1+y^{2}\right)$
(See Con1es, 18).
5. CUPVAIURE AT A STNOULAR POINT: At a singular point of a curve $f(x, y)=0, f_{x}=f_{y}=0$. The character of the point is \&isclosed by the form:

$$
F \equiv \mathrm{f}_{\mathrm{xy}}{ }^{2}-\mathrm{f}_{\mathrm{xx}} \mathrm{f}^{f} \bar{z}
$$

That is, if $F<0$ there is an 1solated point, if $F=0$, a cusp, if $F>0$, a node. The curvature at such a point (excluding the case $\bar{F}<0$) 1 is determined by the usual $K=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}}$ after y^{\prime} and $y^{\prime \prime}$ heve been evalueted. The slopes y^{\prime} may be determined (except when y^{\prime} does not exist) from the Indeteminate form $\frac{-f_{x}}{f_{y}}$ by the appropriate process involving differentiation.
6. CURVAIURE FOR VARIGUS CURVES:

CuRVIES	ESUATIOAF	R
Fect. Hyperbola	$r^{2} \sin 2 \theta-2 x^{2}$	$\frac{r^{3}}{2 k^{3}}$
Catenary	$y^{2}=c^{2}+s^{2}$	$\begin{aligned} & \frac{y^{2}}{c}=c \cdot \sec ^{2} \psi(\text { See con- } \\ & \text { struction } \\ & \text { under Cats- } \\ &\text { nary }) \end{aligned}$
Oyclold	$\begin{aligned} & a=\sqrt{B a j} \\ & x=a(t-a 1 n t) \\ & y=a(1-\cos t) \end{aligned}$	$\begin{aligned} & 4 \mathrm{a} \sqrt{1-\frac{y}{2 a}} \begin{array}{c} \left(\begin{array}{l} \text { Ses construc- } \\ \text { tion under } \\ \text { Cyolo1d) } \end{array}\right. \end{array} \\ & 4 \mathrm{a}^{\cdot \cos \left(\frac{t}{2}\right)} \end{aligned}$
Tractr 1 x	$3=0.1 \mathrm{n}$ esc 9	$\mathrm{E} \cdot \tan \varphi$
Equiangilar Spiral	$a=a\left(e^{\text {m¢ }}-1\right)$	ma.e m ${ }^{m}$
Lenniecate	$r^{3}=8^{2} p$	a ${ }^{3}$ (See conatruction under 3r Lemniacate)
E111pae	$a^{2}+b^{2}-r^{2}=\frac{a^{2} b^{2}}{p^{2}}$	$\frac{a^{2} b^{2}}{p^{3}}$
$\begin{aligned} & \text { Sinuacianl } \\ & \text { Spiralo } \end{aligned}$	$r^{n}=a^{n} \cos n \theta$	$\frac{a^{n}}{(n+1) r^{n-1}}=\frac{r^{2}}{(n+1) 2}$
As trold	$x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$	$3(a \times 5)^{2 / 3}$
Epi- and Hypo-cyeloida	$p=s \sin b \varphi$	$a\left(1-b^{2}\right) \sin b \varphi=\left(1-b^{2}\right) \cdot p$

7. GENERAL ITBMS:
(s) Osculating circles at two corresponding points of Inverse curves are inverse to each other.
(b) If R and R^{\prime} be radil of curvature of a curve and 1ts pedal st corresponding points:

$$
R^{\prime}\left(2 r^{2}-p \cdot R\right)=r^{3}
$$

CURVATURE

(c) The curve $y=x^{n}$ as useful in discussitie furvesure. Consider at the origin the cases for n rational, when $n<\Rightarrow>2$. (See Evolutes.)
(d) For a parabola, R is twice the length of the normal intercepted by the curve and its direotrix.

BIELIOGRAPAY

Edwards, J.: Calculus, Nacmillan (1892) 252. Salmon, G.: Higher Plane Curves, Driblin (1879) 84.

CYCLOID

HISTORY: Apparently first concelved by Mersenne and Gallleo Gallle1 in 1599 and studied by Robervel, Descartes, Pascal, Wallis, the Bernouli1s and others. It enters naturally into a varletv of situations and is fuatly celebrated. (See 40 and $4 \hat{r}$.)

1. DBSCRIPIION: The Cyoloid is the path of a point of a circle rolling upon a fixed line (a roulette). The Prolste and Curtate Cycloids are formed if P is not on the olrele but rigidly attached to it. For a polnt-wise

F1. 62
construction, divide the interval of $(=\pi 8)$ and the semicircie NH into an equel number of parts: $1,2,3$, etc. Lay off $1 \mathrm{P}_{1}=\mathrm{HI}, 2 \mathrm{P}_{2}=\mathrm{H} 2$, etc., as shown.
2. EQUATIONS:

$$
\left\{\begin{array}{l}
x=A(t-a \ln t) \\
y=a(1-\cos t)=2 a \cdot \sin ^{2}\left(\frac{t}{2}\right) .
\end{array}\right.
$$

$s=4 e \cdot \sin \theta$

$$
R^{2}+a^{2}=16 a^{2} .
$$

measured from top of erch).
3. MBTRICAL PROPFRTTRS:
(B) $\Psi=\frac{(\pi-t)}{2}$.
(b) $\left.L_{\text {(one aroh }}\right)=8 \mathrm{a}$ (since $R_{0}=0$, $\mathrm{R}_{\mathrm{K}}=4 \mathrm{~B}$) (SIr Clutistopher Wren, 1658).
(c) $S^{\prime}=\cot \left(\frac{t}{2}\right)$ (since H is 1rastantaneous center or potation of P, Thus the tangent at P passes through iv) (Descartes).
(d) $\mathrm{A}=4 \mathrm{a} \cdot \cos \theta=4 \mathrm{a} \cdot \sin \left(\frac{t}{2}\right)=2(2 H)=2($ Normal $)$.
(e) $\mathrm{B}=4 \mathrm{E} \cdot \cos \left(\frac{\mathrm{t}}{2}\right)=2(\mathrm{AP})$.
(f) A (one aroh) $=3 \pi \mathrm{a}^{2}$ (Roberval 1634, Gallleo approximated this result, in 1599 by carefully welghine pieces of paper cut into the ahapes of a cycloldal arch and the generating oircle).
4. GENERAL ITEMS:

(a) Its evolute is an equal Cycloid. (Huygens 1673.) (Since $s=4 a \cdot \sin \theta$, $\sigma=4 \mathrm{a} \cdot \cos \theta=4 \mathrm{a} \cdot \sin \mathrm{F}$. $R=P P^{\prime}$ (the reflected ofrole rolls elong the horizontal through O^{\prime}. Pl desoribes the evolute cyelo1d. One curve is thus an Involute (or the evolute) of the other.

71g. 63
(b) Since $s=4 a \cdot \cos \left(\frac{t}{2}\right), \frac{d s}{d z}=-2 a \cdot \sin \left(\frac{t}{2}\right)=\sqrt{2 s y}$.
(c) A Tautochrone: The problem of the Teutochrone 13 the detemination of the type of curve along whion a particle moves, subject to a specified force, to arrive at a given point in the same time interval no matter from what initial point it starts. The following was first demonstrated by Huygens in 1673, then by Newton in 1687, and later discussed by Jean Eernoulli, Euler, and Lagrange.

A particle P is confined in a vertical plane to a curve $s=f(\varphi)$ under the influence of gravity:

$$
m \ddot{s}=-m \cdot \cdot \sin \varphi \cdot
$$

Fig. 64
If the particle is to produce harmonio motion: $m \ddot{s}=-k^{2} s$, then

$$
s=\left(\frac{\text { mg }}{k^{2}}\right) \sin q,
$$

that 18 , the curve of restraint must be a oyoloid, generated by a circle of radus $\frac{\mathrm{mg}}{\frac{1 \mathrm{~K}^{2}}{} \text {. The period of }}$ this motion $1 \mathrm{~s} 2 \pi$, a period which 18 independent of the amplitude. Thus two balls (particles) of the same mass, falling on a cycloidal arc from different heights, will reach the lowest point. at the same instant.

Since the evolute (or an involute) at a cithold Is an equal cyoloid, a bob B may be supported at 0 to describe cycloldal motion. The perind
 pendulum (under no pesistance) would
be corstant for all amplitudes and thus the swincs would
count equal time intervals. Clocks designed upon this principle were short Ilved.
(d) A Brachistochrone. First proposed by Jean Bemoulli in 1696, the problem of the Brachiatochrone is the determination of the path along which a particle moves from one point in a plane to another, sub-
joot to a specified

718. 66 force, In the shortest tsme, The following discussion is essentially the solution given by Jecques Berroull1. Solutions were also presented by Leibnitz,

Nowton, and I'Rosp1tal.
For a body falling under gravity blong any curve of restraint: $\ddot{y}=g, \dot{y}=g t, y=\frac{\beta t^{2}}{2}$ or $t=\sqrt{\frac{2 y}{g}}$. At any instant, the velocity of fall is

$$
\begin{gathered}
\text { CYCLOID } \\
s=g \cdot \sqrt{\frac{2 y}{g}}=\sqrt{2 \pi y} .
\end{gathered}
$$

54

Let the medium through wilh the particle fells have uniform density, At any depth $y, v=\sqrt{2 g y}$. Let theoretical layors of the medium be of infinitesimal depth and assume that the velocity of the particle changes at the surface of each layer. If it is to pass from Po to P_{1} to $P_{2} \ldots$ in shortest time, then eccording to the law of reirmation:

$$
\frac{\sin \alpha_{1}}{\sqrt{2 \operatorname{sh}}}=\frac{\sin \alpha_{2}}{\sqrt{4 g h}}=\frac{\sin \alpha_{3}}{\sqrt{5 g h}}=\ldots
$$

Thus the curve of descent, the Itmit of the polymon as h approaches zero and the number of layers increases acoording $7 y$), is such that (Plg .67):

$$
\sin a=k \cdot \sqrt{y} \quad \text { or } \cos ^{2} \theta=k^{2} y
$$

an equation that may be Iden-
tlfied as thet of a Cyclold.
(e) The parallel projection of a gylludrics hellx onto a plane perpendicular to 1 ts axis is a Cyeloid, prolate, curtate, or ondinary. (Montuels, 1799; Guf1lery, 1847.)

Fig. 67
(f) The Catacaustic of a cycloldal arch for a set of paraliel rays perpendiculer to the base is composed of two Cycloidal arches. (Jean Bernoulli 1692.)
(e) The Isoptic curve of a Oyclold is a Curtate or Prolate cyciota (de ia Hire 1704).
(i) Its radial curve is a cirole.
(i) it is frequently found desirable to design the foce and flank of teeti in rack gears as Cyclolds. (PLg. 68).

Tig. 68

BIBLIOGRAPHY
Bdwards, J.: CalduIus, Mamillan (2.892) 337. Encyclopsedia Brltannica: 14th Ed, under "Curves, Spec1a1"
Gunther, S.: B1bl. Math. (2) v1, p.8.
Keown and Falres, Mechanl sm, NoGraw H111 (19>1) 139. Salrom, G.: H1pher Plane Curves, Dubin (i879) 275. Webetor, A.G.: Dymamlas of a Particle, Lespsic (1912) 77. Wulifing, E.: B1bl. Moth. (3) v2, 2, 235.

DELTOID

HISTORY: Conceived by Euler in 7745 in connection with a study of caustic curves.

1. DBSCRIPMION: The Deltoid is a 3 -cusped Hypocycioid. The rolling eirele may be e1ther one-third ($a=3 b$) or two-th1pde $(2 a-3 B)$ as large as the fixed circle.

Fig. 69
For the double generation, consider the right-hand figure. Here $O B=O T=A, A D=A T=\frac{28}{3}$, where a is the center of the fixed eircle and A that of the rolling circle which cerries the tracing point P. Draw IP to T^{\prime}, T'E, PD and T'o meeting in F. Draw the cireumelrele of F, P, and T^{\prime} with center at A^{\prime}. This oircle is tengent
to the fixed circle at T^{\prime} gince angle $\mathrm{FP}^{\prime \prime}=\frac{\pi}{2}$, and 1 ts diemeter FT^{\prime} extended passes through 0 .

Triangles TET', TDP, and T'FP are all similer and
$\frac{\mathbb{T P}}{\text { T1P }}=\frac{2}{1}$. Thus the radius of this smallest cirole $1 \mathrm{~s} \frac{\mathrm{a}}{3}$. Furthermore, arc $\mathbb{T P}+\operatorname{arc} \mathbb{T}^{\prime} P=$ arc TP'. Accordingly, if P were to start at X, elther circle would generste the same Deltoid - the circles rolling in opposite direction. (Notice that PD is the tangent at P.)
2. EQUAFIONS: (where $a=30$).

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=b(2 \text { oce } t+\infty 082 t) \\
y=b(2 \sin t-01 n z t) .
\end{array} \quad\left(x^{2}+y^{2}\right)^{2}+8 b x^{3}-24 b x y^{2}+18 b^{2}\left(x^{2}+y^{2}\right)=27 b^{4} .\right. \\
& s=\left(\frac{8 b}{3}\right) \cos 3 \varphi . \quad R^{2}+9 s^{2}=64 b^{2} . \quad r^{2}=9 b^{2}-8 p^{2} . \\
& p=0 \cdot \sin 3 \varphi . \quad z=b\left(2 e^{1 t}+\theta^{-21 t}\right) .
\end{aligned}
$$

3. METRICAL FROPBRTIES:
$L=16 b$.
$\varphi=\pi-\frac{\mathrm{t}}{2}$.
$R=\frac{d s}{d \varphi}=-8 p$.
$\mathrm{A}=2 \pi \mathrm{~b}^{2}=$ double thet of the inscribed circle.
$4 b=$ length of tengent (BC) intercepted by the ourve.
4. GENERAL ITEMS:
(a) It is the envelope of the Simson line of a fixed triangle (the line formed by the feet of the perpendiculars dropped onto the sidea from a variable point on the circumcircle). The center of the curve is at the center of the triangle's nine-polnt-circle.
(b) Its evolute is another Delto1d.
(c) Kakeye (1) confectured thet it encloses a region of least area within which a straight rod, taking all possible orlentations in its motion, can be reversed. However, Besicovitch showed that there is no least avea (z).
(d) Its Inverse is a Cotes' Spiral.
(e) Its pedal with respect to ($c, 0$) 1s tiae familiy of folla

$$
\left[(x-c)^{2}+y^{2}\right]\left[y^{2}+(x-c) x\right]=4 b(x-c) y^{2}
$$

reducible to:

$$
\left.r=4 b \cos \theta \sin ^{2} \theta-0 \cdot \cos \theta\right)
$$

(W1th respect to a cusp, vertex, or conter: a simple, double, tri-folium, resp.).
(f) Tangent Construction: Bince T is the Instantaneous center of rotation of F, TP is normal to the path. The tangent thus pesses through N, the extremity of the diameten through T.
(g) The tangent length intercepted by the curve is constant.
(h) The tangent $B C$ is bisected (at N) by the inscribed circle.
(1) Its patacaustic for a set of parailel rays is an Astroid.
(j) Its orthoptic curve is a circle. (the inscribed cirole).
(k) Its radial ourve is a trifolium.
(I) It is the envelope of the tangent fixed at the vertex of a parsbola which touches 3 given 11 nes (s Roulette). It is also the onvelope of this Parabola.
(m) The tangents at the extremities B, C meet at right angles on the inscribed circle.
(n) The nornals to the ourve at B, C, and P all meet at I, a point of the ofrcumeircle.
(o) If the tangent $B C$ be held flxed (as a tangent) and the Dolto1d allowed to move, the locus of the cusps is a Nephroid. (For an elementary geometricel proof of this elegant property, see Mat. Math. Mag., XIX (1945) p. 330.

American Mathematical Monthly, v29, (1922) 160. Bul2. A. M. S., v28 (1922) 45. Cremona, Crelle (1865).
Perpers, Quar. Jour. Math. (1866).
L'Interm. d. Meth., v3, p.166; v4, 7.
Proc. Edin. Vath. Soc., v23, 80.
Sorret; Nouv. Ann. (1870).
Tomsend, 3duc. Times Reprint (1866).
Wieleitner, H.: Spezielle ebene Kurven, Leipsig (1908) 142.
(1) Tohoku Se. Reports (1917) 71.
(a) Mathemetische Zeitschr1ft (1928) 312.

ENVELOPES

HISTORY: Leibnitz (1694) and Teylor (1715) were the first to encounter singular solutions of differential equations. Their geometrical significance was first indicated by Lagrange in 1774. Particular studies were made by Cayley in 1872 and Hill in 1888 and 1918.

1. DBFINITION: A differential equation of the nth degree

$$
f(x, y, p)=0, \quad p=\frac{d y}{d x}{ }^{*}
$$

definea $n p^{\prime} s$ (real or imaginary) for every point (x, y) in the plane. Its solution

$$
F(x, y, c)=0
$$

of the nth degree in c, defines $n c^{\prime}$ s for each (x, y). Thus attached to each point in the plane there are \underline{n} integral curves with n corresponding slopes. Throughout the plane some of these curves

FIg. 70 together with their slopes may be real, some imaginary, some coinoident. The locus of those points where there are two or more equal values of p, or, which is the same thing, two or more equal values of c, is the envelope of the family of 1 ts integral curves. In other words, this envelope is a curve which touches at each of 1 ts points e curve of the family. The equation of the envelope actisfies the differential equation but is usually not a member of the family.

* p is ueed here for the derivative to oonform with the general cuatomi throughout the 11terature. It ahould not be confused with the diotance from origin to tangent as usad sleswiere in this book.

Since a double root of an equation must also be a root of its derivative (and conversely), the envelope is obtalned from either of the sets (the discriminant relation):*

$$
\left\{\begin{array} { l }
{ f (x , y , p) = 0 } \\
{ f _ { p } (x , y , p) = 0 }
\end{array} \quad \left\{\begin{array}{c}
F(x, y, c)=0 \\
F_{0}(x, y, c)=0
\end{array}\right.\right.
$$

Each of these sets constitutes the parametric equations of the envelope.
*Such queations as tac $\frac{\text { locus, }}{\text { cluspidal and nodel } 1001 \text {, otc., whoes }}$
equations appear as factors in one or both diacriminante, are dieequetions appear as factors in one or both diacriminante, are disoussed in H111 (1918). For examples, see Cohen, Muras, Gla1sher.
2. EXAMPLIS:

(e) $\left\{\begin{array}{l}f \equiv y-p x-\frac{4}{p}=0 \\ f_{p} \equiv-x+\frac{4}{p^{2}}=0 .\end{array}\right.$ $\left\{\begin{array}{l}P=y-0 x-\frac{4}{c}=0 \\ F_{0}=-x+\frac{4}{c^{2}}=0 .\end{array}\right.$
ylelding: $y^{2}-16 x$ A as the envelope.

F18. 71

$$
\text { (b) }\left[\begin{array}{l}
f=y-p x-\frac{p}{(p-1)}=0 \\
f_{p} \equiv-x+\frac{1}{(p-1)^{2}}=0 \\
{\left[\begin{array}{rl}
P & =x \cdot \sec ^{2} t+y \cdot \operatorname{cec}^{2} u-1=0 \\
F_{0} & =2 x \cdot \sec ^{2} 0 \tan t-2 y \cdot \csc ^{2} u \\
& -2 y \cdot \csc ^{2} u \cot \theta=0
\end{array}\right.}
\end{array}\right.
$$

y lelaing the parabois $\sqrt{x}+\sqrt{y}=+1$
F1g. 72
as the envelope of I Lnes, the sum of whose intercepts is a positive constantn

ENVELOPES

NOTE : The two preceeding examples ape differential equations of the clasraut form:

$$
y=p x+g(p)
$$

The method of solution is that of differentiating uith respect to x :

$$
p=p+x\left(\frac{d p}{d x}\right)+\left(\frac{d g}{d p}\right)\left(\frac{d p}{d x}\right)
$$

Hence, $\left(\frac{d p}{d x}\right) \cdot\left[x+\left(\frac{d g}{d p}\right)\right]=0$, and the gerierel solution ia obtained from the first factor: $\frac{d p}{d x}=0$, or $p=c$. Thet $1 \mathrm{a}, \mathrm{y}=\mathrm{m}+\mathrm{g}(\mathrm{c})$.
The second fector: $x+\frac{d g}{d p}=0$ is recognized as $e_{p}=0$, a requirement for an envelope.
3. TBCHNIQUE: A family of curves may be given in terms of two perameters, a, b, which, themselvea, are connected by a certain relation. The following method is proper and is particularly adaptable to forms which are homogeneous in the parameters. Thus

$$
\text { given } \quad(x, y, a, b)=0 \quad \text { and } \quad g(a, b)=0
$$

Their partial differentials are

$$
f_{a} d a+f_{b} d b=0 \text { and } g_{a} d a+g_{b} d b=0
$$

and thus $f_{s}=\lambda \mathrm{Ea}, \quad \mathrm{A}_{\mathrm{B}}=\lambda \mathrm{Eb}$,
where λ is a factor of proportionality to be determined. The quantities a, b may be eliminated among the equatione to give the envelope. For example:
(a) Constder the envelope of a

Ine of constant longth moving With its ends upon the coordi= nete axes (a Trammel of Arohi-
medes): $\frac{z}{a}+\frac{y}{b}=1$ where
$a^{2}+b^{2}=1$. Taetr alfferentiala
give $\left(\frac{x}{a^{2}}\right) d a+\left(\frac{y}{b^{2}}\right) d b=0$ and $a \cdot d e+b \cdot d b=0$.

718. 73

Nultiplying the first by B, the second by \underline{b}, and addIng: $\frac{x}{a}+\frac{y}{b}=1=\lambda\left(a^{2}+b^{2}\right)=\lambda$, by virtue of the given functions. Thus, since $\lambda=1$ and $a^{2}+b^{2}=1$, $x=a^{3}, y=b^{3}$, or $x^{\frac{2}{3}}+y^{\frac{2}{3}}=-1$ an Astrotd.
(b) Consider concentric and coaxial ellipses of constent area: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where

Fig. 74 $a b=k$. We have $\left(\frac{x^{2}}{a^{3}}\right) d a+\left(\frac{y^{2}}{b^{s}}\right) d b=0$, $b \cdot d a+8 \cdot d b=0$, from which $\frac{x^{2}}{a^{3}}=\lambda b, \frac{y^{2}}{b^{3}}=\lambda a$. Multiplying the flust by $\underline{\varepsilon}$, the second by \underline{b}, and sdding:
$I=2 \lambda a b=2 \lambda k$ and thus $\lambda=\frac{1}{2 k}$. Thus $x^{2} y^{2}=\frac{k^{3}}{2}$, a pa1r of Hyperbolas.
4. FOIDING THE CONICS: The conics es envelopes of Ines may be nicely illustrated by using ordinery wax paper. Let C be the center of a fixed circle of radius \underline{n} and P a fixed point in its plane. Fold P over upon the circle to P^{\prime} and oresse. As P' moves upon the circle, the cresses envelope a central conic with P and C as foci:

Fig. 75
an Bllipse if p be inside the circle, an Hyperbola if outside. (Drew OP' cutting the oresse in Q. Then $P Q=$ $P^{\prime} Q=u, Q C=v$. For the Ellipse, $u+v=r$; for the Hyperbola $u-v=r$. The cresses are tangents since they bisect the angles formed by the focal radil.)

For the Parabole, a fixed point P is folded over to P^{\prime} upon s fixed Iine L (a circle of infinite racius). $P^{\prime} Q$ is drewn perpendiculer to I and, s ince $P Q=P^{\prime} Q$, the locus of Q 1s the Parabola with P as focus, I as directrix, and the orease as a tangent. (The simplicity of this demonstretion should be compared to an anslytical method.) (See Conics 16.)
5. GSNERAL ITICMS:
(a) The Evolute of a given curve 1 s the envelope of 1 ts normsis.
(b) The Catacaustic of a given curve is the envelope of its reflected light rays; the Diacaustic is the envelope of refracted rays.
(c) Curves parallel to e given curve may be considered as:
the envelope of circles of fixed radius with centers on the given curve; or as
: the envelope of circles of fixed radius tangent to the given curve; or as
the envelope of lines parallel to the tangent to the given ourve and at a constant distance from the tangent.
(d) The f1rst positive pedal of a given curve is the envelope of circles through the pedsl point with the radius vector from the pedal point as diameter.
(e) The first negative Pedal is the envelope of the line through a point of the curve perpencicular to the radius vector from the pedal point.
(f) If L, M, N are linear functions of x, y, the envelope of the family $L \cdot c^{2}+2 M \cdot c+\mathbb{N}=01$ s the conic

ENVELOPES

F1g. 76
where $I=0, N=0$ are two of 1 ta tangents and $\mathrm{M}=0$ their chord of contact. (F1g. 76).
(g) The envelope of a Inne (or curve) carried by a curve rolling upon a flxed curve is a Roulette. For exmmple:
the envelope of a diameter of a circle rolling upon a ine is a Cycloid;
the envelope of the directrix of a Parabols rolling upon a line is a Catenary.
(h) An important envelope arises in the following oalculus of variations problem (Fig. T7) : Given the curve $F=0$, the point A, both In a plane, and a constant

Fig. 77 force. Let $y=c$ be the IIne of zero velocity. The shortest time path from A to $F=0$ is the cyoloid normal to $\mathrm{F}=0$ generated by a circle rolling upon $\mathrm{y}=\mathrm{c}$. However, let the famlly of Cyclolda normal to $\mathrm{F}=0$ generated by all circles rolling upon $y=c$ envelope the curve $\mathrm{E}=0$. If this envelope passes between A and $F=0$, there is no unique solution of the problem.

BIBLIOGRAPHY

Bliss, G. A.: Calculus of Variations, Open Court (1935). Cayley, A.: Mess. Math., II (1872).
Cle1raut: Mem. Paris Acsd. Sci., (1734).
Cohen, A.: Difeerentisl Eountiong, D. C. Heeth (1933) 86-100.
Glaisher, J. W. I.: Mess. Vath., XII (1882) 1-14 (examples) Hill, M. J. M.: Proc. Lond. Kath. Sc. XIX (1888) 561589, 1b1d., S , XVII (1918) 149.
Kells, L. M. : Differentiel Equations, MoGraw H111 (1935) 73 ff 。
Lagrange: Men. Berlin Acad. So1., (1774).
Murrey, D. A.: Differential Equations, Iongmans, Green (1935) 40-49.

EPI- and HYPO-CYCLOIDS

HISTORY: Cycloldal ourves were ilrst concelved by Roemer (a Dene) In 1674 while studylng the best fom for gear teeth. Grilleo and Nerserne had already (1599) discovered the ordinamy Cycloid. The beautiful double generation theoren of these curves was flrst noticed by Danlel Bernoulli in 2725 . Astronomers find fomm of the cyololdel eurves in various corones (see Proctor). They also occur as Caustios. Rectification was glven by Newton in his Principis.

1. DESCRIPTION:

The Epicycloid is generated by a point of a olrole rolling externally upon a flxed clrcle.

The EypocyeloLd is generated by a point of a circle rolling intermally upon a flxed ofrcie.

79. 78
2. DOUBLE GENERATION:

Let the flxed eircle have center 0 and radius $O T=$ $O E=B$, and the rolling circle center A^{\prime} and radius
$A^{\prime} I^{\prime}=A^{\prime} F=b$, the latter carrying the tracing point P. (Soe Fig. 79.) Drav ET', OTM, snd PTl to T. Let D be the intersection of TO and FP and draw the circle on T, P, and D. This circle is tangent to the fixed circle since engle DPT is a right angle. Now alnce PD is parallel to T'E, triangles ORT' and OFD are isosceles and thus

$$
D E=2 b
$$

Furthermore,

$$
\text { arc } I^{\prime}=a \theta \text { and arc } T^{\prime} P=b t=
$$

$$
\text { are } T^{\prime} X
$$

Accordingly,

$$
\text { arc } T X=(a+b) \theta=\text { arc TP, for the }
$$ Epicyolo1d,

or
$=(a-b) \theta=$ erc $T P$, for the Hypocycioid.

Thus, esch of these pycloidal curves may be generated in two ways: Dy two rolling circles the sur, or difference, of whose redt1 18 the redius of the fixed circle.

F1g. 79
The theorem is also evident from the analytic viewpoint. Consider the case of the Hypocyclo1d: (Euler, 1784)

$$
\left\{\begin{array}{l}
x=(a-b) \cos t+b \cdot \cos (a-b) \frac{t}{b} \\
y=(a-b) \sin t-b \cdot \sin (a-b) \frac{t}{b},
\end{array}\right.
$$

and let $b=\frac{(a+c)}{2}, t=\frac{(s+c) t_{1}}{c}$. The equations become: (dropping subscript)

Notice thet a change in sign of c does not alter these equations. Accordingly, rolling circles of radil $\frac{(a+c)}{2}$ or $\frac{(a-c)}{2}$ generste the same curve upon a flxed circle of radius a. That is, the difference of the radil of $f 1 x e d$ circle and rolling efrele gives the radius of a third circle which will genergte the same Hypocyclo1d.

An anelogous demonstration for the Epicycloid can bo constructed without diffleulty.
3. EGUATIONS:
$\left\{\begin{array}{c}\text { BPICYCLOLD } \\ x=(a+b) \cos t-b+\cos (a+b) \frac{t}{b} \\ y=(a+b) \sin t-b \cdot \sin (a+b) \frac{t}{b}\end{array}\right.$
(x-axis through a cuep)
$\left\{\begin{array}{l}x=(a+b) \cos t+b \cdot \cos (a+b) \frac{t}{b} \\ y=(a+b) \sin t+b \cdot b \ln (a+b) \frac{t}{b}\end{array}\right.$

HYPOCYCLOLD

$\left\{\begin{array}{l}x=(a-b) \cos t+b \cdot \cos (a-b) \frac{t}{b} \\ y=(a-b) \operatorname{cin} t-b \cdot \sin (a-b) \frac{t}{b} .\end{array}\right.$
(x-axis through a cuap)
(x-axie bieecting arc betwean 2 auccaesive cuspe)

$$
\begin{array}{rl}
a=\frac{4 b(a+b)}{a} \operatorname{ain} \frac{a}{a+2 b} \cdot \varphi, \quad \left\lvert\, \quad B=\frac{4 b(b-a)}{b} \theta 1 r\right. \\
\text { or } \\
\text { Where } \quad B & B 1 \quad \text { Epleyeloid, } \\
B & =1 \quad \text { Ordinary Cyoloid, } \\
B & >1 \quad \text { Hypocyclo1d. }
\end{array}
$$

$$
B=\frac{40(b-a)}{b} \sin \frac{a}{a-2 b} \cdot \varphi,
$$

*Th1e equation, of couree, zay juat an well involve the coaine.

$$
\begin{aligned}
& \text { or } p^{2}=c^{2}\left(r^{2}-a^{2}\right) \\
& \text { where } c^{2}=\frac{(a+2 b)^{2}}{4 b(a+b)} \\
& \text { or }=\frac{(s-2 b)^{2}}{4 b(b-a)}
\end{aligned}
$$

$$
\begin{aligned}
\text { Where } \quad m=\frac{(a+b)}{b} \text { for the Epicycloid } \\
\text { m }=\frac{(b-a)}{b} \text { for the Hypocycloid. }
\end{aligned}
$$

$B p=a \cdot \sin B \varphi$
4. METRICAL PROPERTIES:
$\mathrm{L}(a f$ one arch $)=\frac{8 b^{2} k}{a}$ where $k=\frac{(a+b)}{b}$ or $\frac{(b-a)}{b}$.
A (of segment formed by one arch and the center)
$=k(k+1) \cdot \frac{\pi a^{2}}{(k-1)^{3}}$ where k has the values sbove.
$R=A B \cdot \cos B \varphi=\frac{4 k p}{(k+1)^{2}}$ with the foregoing values of K. (4 may be obtainca in terms of t from the given figures).
[See Am. Math. Monthly (1944) p. 587 for an elementary demonstration of these properties.]
5. SPECTAL CASES:

Epicyclo1ds: If b=a...Cardiold

$$
2 b=8 \ldots \text { Nephroid. }
$$

Hypooycloids: If $2 b=$ E...IIne Segment (See Trochoids) $3 b=a .$. Deltoid $4 b=$ a...Astrold.
6. GENKRAT ITEMS:
(a) The Evolute of any Cycloidal Curve is another of the same species. (For, gince all such ourves are of the form: $\varepsilon=A$ in $B \varphi$, thelr evolutes are $\frac{d s}{d \varphi}=\sigma=$
AB sin $\mathrm{B} \varphi$. These evolutes are thus Cycloldal Curves similar to their involutes with linear dimensions altered by the factor B. Bvolutes of Fpicycloide are smaller, those of Hypocyclofds larger, than the curvea themselves).
(b) The envelope of the famlly of 11 nes:
$x \cos 6+y \sin \theta=0 \cdot \sin \{n \theta)$ (with parameter θ) is an Epl-or Hypocycloid.
(c) Pecals with respect to the center are the Rose Curves: $r=c \cdot s \ln (n \theta)$. (See Trochoids).
(d) The Isoptic of an Epieycio1d is an Epitrochoid (Chasles 1837).
(e) The Epioycloids are Tautochrones (see Ohrimann).
(f) Tangent Construction: Since T (see figures) is the instantaneous center of rotation of P, TP is normal to the path of P. The perpendicular to TP is thus the tangent at P. The tangent $1 s$ accordingly the chord of the rolling ofrcle passing through N, the point diametrically opposite T, the point of contact of the circles.

BIBIIOGRAPHY

Edwards, J.: Celculus, Mecmillan (189e) 337.
Encyclopaedia Britannica, 14 th Ed. "Curves, Special".
Ohrtimann, C.: Das Problem ger Tautochronen.
Proctor, R. A.: The Geometry of Cyclofde (1878).
Salmon, G.: Higher Plane Curves, Dublin (1879) 278.
Wieleitner, H.: Spezielle ebene Kurven, Leipsig (1908).

EVOLUTES

HISTORY: The 1dea of evolutes reputedly origineted with Huygens in 1673 in conneotion with his atudies on light However, the concopt may be traced to Apollonius (about 200 BC) where it appoars in the fifth book of his Conic Sections.

1. DEFINITION: The Evolute of a curve 1 s the locus of 1ts centers of curvature. If (α, β) is this center,

$$
\begin{aligned}
& \alpha=x-R \cdot \sin \psi \\
& \beta=y+R \cdot \cos \psi
\end{aligned}
$$

where R is the radius of curvature, φ the tangential angle, and (x, y) a point of the given curve. The quantities x, y, R, sin $\uparrow, \cos \uparrow$ may be expressed in terms of a single variable which acts as e parameter in the equations (in α, β) of the evolute.

Fig. 80
2. IMPORTANT RELATIONS; If $s 18$ the anc length of the given curve,

$$
\begin{aligned}
& \frac{d \alpha}{d s}=\frac{d x}{d s}-R \cos \varphi(d \varphi / d s)-\sin \varphi\left(\frac{d R}{d s}\right) \\
& \frac{d \varphi}{d s}=\frac{d y}{d s}-R \sin \varphi(d \varphi / d s)+\cos \varphi\left(\frac{d R}{d s}\right) .
\end{aligned}
$$

But $\quad \sin \varphi=\frac{d y}{d s}, \quad \cos \varphi=\frac{d x}{d s}, \quad R=\frac{d s}{d \varphi}$.
Thus $\quad \frac{d \alpha}{d s}=-\sin \varphi\left(\frac{d R}{d s}\right), \quad \frac{d \beta}{d s}=\cos \varphi\left(\frac{d R}{d s}\right)$.

Hence

$$
\frac{d \beta}{d a}=-\cot \varphi=\frac{-1}{y^{\prime}}
$$

Accordingly, all tangents to the evolute are normels to the given curve. In other words, the evolute 1s the envelope of nommals to the given curve.

From the foregolng:

Thus

$$
\begin{gathered}
d \sigma= \pm d R \text { where } d \sigma^{2}=d \alpha^{2}+d \phi^{2} . \\
\sigma=R_{1}-R_{2} .
\end{gathered}
$$

That 1s, the are length of the evolute (19 R 1a monotone) 1s the difference of the radil of curvature of the given curve measured from the end points of the arc σ Furthermore, the given curve is an involute of Its evolute.

71g. 81
3. GENBRAL ITEMS: [Many of these msy be established most simply by using the Whewell equation of the curve. See Sec. 7 If.]
(a) The evolute of a Parabola is a Semi-cubic Parabola
(b) The evolute of a central conio is the Lamé curve: $\left(\frac{x}{A}\right)^{\frac{2}{3}} \pm\left(\frac{y}{B}\right)^{\frac{2}{3}}=1$.
(c) The evolute of an equiangular spiral is an equal equiangular spiral.
(d) The evolute of a Tractrix is a Catenary.
(e) Evolutes of the Bpl- and Hypocyclolds are curves of the same spectes. [See Intrinsic Eqns. and 4(b) following.]
(f) The evolute of a cayley sextic is a Nephroid.
(g) The Catacaustic of a given curve is the evolute of its orthotomic curve. (See Caustics.)
(h) Generelly, to a flex point on a curve corresponds an asymptote to 1 ts evolute. [For exception see $y^{3}=x^{5}, 4(0)$ following.]
4. EVOLJTES OF SOME CURVES:
(a) The Contes:

Fig. 82
The Evolute of
The Ell1pse: $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$ is $\left(\frac{x}{A}\right)^{\frac{2}{3}}+\left(\frac{Y}{B}\right)^{\frac{2}{3}}=1$,

$$
A a=B b=a^{2}-b^{2}
$$

The Hyperbole: $\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1$ is $\left(\frac{x}{H}\right)^{\frac{2}{3}}-\left(\frac{y}{K}\right)^{\frac{2}{3}}=1$,

$$
\mathrm{Ha}=\mathrm{Kb}=\mathrm{a}^{2}+\mathrm{b}^{2} .
$$

The Parabole: $x^{2}=2 k y$ is $x^{2}=\frac{8}{27 k}(y-k)^{3}$.
(An elegent construction for the center of Curvature of a conic is given in Conics 20.)

Fig. 84
5. GENERAL NOTB: Where there ia symetry in the given curve with respect to a ine (except for points of osculation or double flex) there will correspond a cusp in the evolute faprosching the point of symmotry on al ther side, the normal forma a double tangent to the evolute). This to not sufficlert, however.
If a curve hes a cusp of the first kind, its evolute in general passes through the cusp.
If a curve has a cusp of the second kind, there corresponds a flex in the evolute.
7. INTRINSIC EQUATION OF ITHE EVOLUTE:

Let the given curve be $g=f(\varphi)$
With the points O^{1} and P^{\prime} of
Its evolute corresponding to
0 and P of the given curve.
Then, if σ is the arc length
of the evolute:
$\sigma=R_{D}-R_{o}=\frac{d s}{d \psi}-R_{o}=f^{\prime}(\psi)-R_{o}$
In terms of the tangential angle β, (since $\beta=\varphi+\frac{\pi}{2}$):

$$
\sigma=\rho^{\prime}\left(\beta-\frac{\pi}{2}\right)-R_{0}
$$

[Example: The Gyoloid: $a=4 a \cdot \sin \psi ; \sigma=4 a \cdot \cos \varphi=$ $\left.48 \cdot \cos \left(\beta-\frac{\pi}{2}\right)=4 a \cdot \sin \beta\right]$.

BIBLIOGRAPHY

Byerly, W. E.: Differential Calculus, Ginn and Co. (1879).

Encyclopsedia Britannice, 14th Bd. under "Curves, Specisl."
Edwards, J.: Calculus, Macmillan (1892) 268 ff.
Salmon, G.: H1gher Plane Curves, Dublin (1879) 82 ff . Wieleitner, H.: Spezielie ebene Kurven, Le1psig (1908) 169 ff .

EXPONENTIAL CURVES

HISTORY: The number "e" can be traced back to Napler and the year 1614 where it entered his aystem of logarithms. Strangely enough, Nepier conceived his ides of logarithme before anything wes known of exponents. The notion of a normaliy distributed variable originated with DeMolvre In 1733 who made known his 1doas in a letter to en acquaintance. This was at a time when DeMolvre, bentshed to England from France, eked out a livelihood by supplying infomation on games of chance to gamblers. The Rernoulli approach through the binomial expansion was publlshed posthumously in 1713.
2. DESCRIPTION: "e". Pundamental definitions of this inportant naturel constant are:

$$
\begin{aligned}
e= & \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=1_{x \rightarrow 0}(1+t \cdot x)^{\frac{1}{x}} \\
= & \sum_{0}^{\infty} \frac{x^{k}}{k!} \doteq 2.718281 .
\end{aligned}
$$

Hg. 86
2. GENBFAL ITEMS:
(a) One dollar at 100% interest compounded k times a year produces at the end of the year:
$\mathrm{S}_{\mathrm{lc}}=\left(1+\frac{1}{k}\right)^{k}=1+1+\frac{k(k-1)}{2!} \cdot \frac{1}{k^{2}}+\frac{k(k-3)(k-2)}{3!} \cdot \frac{1}{k^{2}}+\ldots+\frac{1}{k^{k}}$ dollars.
If the interest be compounded continuousiy, the total at the end of the year 13
(b) The Euler form:

$$
e^{2 x}=\cos x+1 \cdot \sin x
$$

produces the numerical relations:

$$
e^{1 \pi}+1=0, \quad e^{1 \frac{\pi}{2}}=1
$$

From the latter

$$
(\sqrt{-1})^{\sqrt{-I}}=\left(e^{1 \frac{\pi}{2}}\right)^{1}=e^{-\frac{\pi}{2}} \doteq 0.208
$$

3. The Lay of Growth (or Decay) is the product of experience. In an ideal state (one in which there is no disease, pestilence, war, famine, or the like) many natural populations increase at a rate proportionel to the number present. That $f s$, if \underline{x} represents the number of individuels, and t the time,

$$
\frac{d x}{d t}=k x
$$

\qquad
This occurs in controlled becteria cultures, decomposition and conversion of chemical substances (such Es rediun and sugar), the accumulation of interest bearing money, certain types of electrical circuits, and in the history of colonies such as frust flles and people.

A further hypothesis supposes the governtng law as

$$
\frac{d x}{d t}=k \cdot x \cdot(n-x) \quad \text { or } \quad x=\frac{c n}{\left(c+e^{-n k t}\right)}
$$

where n is the maximum possible number of inheibitants a number regulated, for instance, by the food 3upply. A more general form devised to fit observations involves the function $f(t)$ (which may be periodic, for example):
$\frac{d x}{d t}=f(t) \cdot x \cdot(n-x) \quad$ or $\quad x=\frac{c n}{\left(c+e^{-n \cdot f f \cdot d t}\right)} \cdot(F 1 g \cdot 87 a)$
At moderate velocities, the resistance offered by water to a ship (or alr to an automobile or to a parachute) is approximately proportional to the velocity. Fhat is,
$s=\xi=\dot{v}=-k^{2} v, \quad$ or $\quad s=\left(\frac{v_{D}}{k}\right)\left(1-e^{-k^{2} t}\right)$.

4. THE PROBABILITY (OR NORMAL, OR GAUSSIAN) CURVE:

(a) Since $y^{\prime}=-x y$ and $y^{\prime \prime}=y\left(x^{2}-1\right)$, the flex points are $\left(\pm 1, e^{-1 / 2}\right)$. (An Inseribed rectangle with one side on the $x-a \times 1$ a has area $=x y=-y^{1}$. The largest one 1 : given by $y^{\prime \prime} m 0$ and thus two comers are at the flex points.)
(b) Area. By definition $\Gamma^{\prime}(n)=\int_{0}^{\infty} z^{n-1} e^{-z} d z$. In this, let $I(n)=\int_{0}^{\infty} x^{2 n-2} \cdot e^{-x^{2}} \cdot 2 x d x=2 \int_{0}^{\infty} x^{2 n-1} \cdot e^{-x^{2}} \cdot d x$. Putting $n=\frac{1}{2}$,

$$
I\left(\frac{1}{2}\right)=2 \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}=\text { Ares }
$$

The Normal Gurve 1s, more specifically:

$$
y=\frac{n}{\sigma \cdot \sqrt{2 \pi}}
$$

$$
\frac{-(x-\mu)^{2}}{2 \sigma^{2}}
$$

For this population, n is the size, μ the mean, and σ the standard deviation. Rewriting for simplicity:

$$
y=k \cdot e^{-x^{2} / 2 \sigma^{2}}
$$

the flex points are $\left(\pm \sigma, \mathrm{k}^{\cdot} \mathrm{e}^{-\frac{1}{2}}\right)=\left(\pm \sigma, y_{0}\right)$. It 1 a evident that the rlex tangents:

$$
y-y_{0}=\mp\left(\frac{y_{\ell}}{\sigma}\right)(x \pm \sigma)
$$

have x-intercepts which are completely independent of the selected y-unit.

A stream of shot entering the "slot mach1ne" show is separated by nail obstruetions into bins. The collection will form into a histogram approximating the nommal curve, the number of shot in the bins proportionel to the coefficients in a binomisl expanaion.

BIBLIOGRAPHY

Kenney, J. F.: Mathematics of Statistics, Van Nostrand II (1941) 7 ff .
Rietz, H. L.: Mathematicel Stetisties, Open Court (1926) Stelnhaus, H.: Mathematical Snspshots, Stechert (1938)
120.

FOLIUM OF DESCARTES

HISTORY: F1ret discussed by Descartes in 1638.

1. EQUATIONS:

$$
\left\{\begin{array}{l}
x=\frac{3 a t}{\left(1+t^{3}\right)} \\
y=\frac{3 a t^{2}}{\left(1+t^{3}\right)}
\end{array}\right.
$$

$$
r=\frac{3 A \cdot \sin \theta \cos \theta}{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)} .
$$

$r=\frac{3 a \cdot \sin \theta \cos \theta}{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)}$. $\underset{\sim}{*}$

FIG. 89
2. VETRICAL PROPERIIES:
(a) Area of $100 p:=\frac{3 a^{2}}{2}=$ area between curve and asymptote.
3. GENERAL:
(a) Its asymptote is $x+y+a=0$.
(b) Its Hessian is another Follum of Descartes.

BIBLITOGRAPHY

Encyolopaedia $\frac{\text { Britannica, }}{\text { Spectal }} 14$ th Ea . under "Curves, Spectal.

FUNCTIONS WITH DISCONTINUOUS PROPERTIES

This collection is composed of illuatrations which may be useful at various times as counter examples to the more frequent functions having sll the regular propertics.

1. FUNCTIONS WITH RENOVABI区 DISCONTINUITIES:

Fig. 90

(b) $y=\frac{\left(x^{3}-1\right)}{(y-1)}$, undefined for $\bar{x}=1$, is represented by the Parsbole $y=x^{2}+x+1$ except for the poirt where $x=1$. Since Limit $y=3$, this is a removable discontinuity.

F1g. 91
(c) The 1 mpor-
tant function
$y=\frac{\sin x}{x}$, un-
defined for
$x=0$ has
Inmit $y=1$
$x \rightarrow 0$
and thus has a removable discontinuity. The hyperbolas
$x y= \pm 1$ form a bound to the curve.

FIg. 92
(d) The function $y=x \cdot \sin \left(\frac{-}{x}\right)$ is not depined for $x=0$. However, Limlt $y=0$ $x \rightarrow 0$
and the function has a Femovable discontinuity at $x=0$. The ines $y= \pm x$ form a bound to the curve.

Fig. 93

2. FUNCTIONS WITH NON-REMOVABLE DISCONTINUITIES:

(a) $y=\arctan \frac{1}{x}$, uncerined
 for $\mathrm{x}=0$.
$\operatorname{Limit}_{x \rightarrow 0+} y=\frac{\pi}{2} ; \operatorname{Limit}_{x \rightarrow 0-} y=\frac{-\pi}{2}$
The left and right 11 m 1 ts are both ifnite but different.

FUNCTIONS WITH DISCONTINUOUS PROPERTIES

(c) $\mathrm{y}=\operatorname{Linit}_{\mathrm{t} \rightarrow \infty}(\mathrm{I}+\sin \mathrm{m} \mathrm{x})^{\mathrm{t}}+1$
1.s Alscontinucus for the set:

$$
\pm x=0,1,2,3, \ldots
$$

but has values +1 or -1 else-
where.

F1g. 96
(d) $y=e^{\frac{1}{x}}$ is undefined for
$x=0$. Limit $y=0$;
L1mit $y=\alpha$ Laft and right $x \rightarrow 0+$

11m1ts different.

F18. 97

$$
\text { (e) } y=\frac{1}{2^{\frac{1}{x}}+1}
$$

Fig. 98
is undefined for $x=0$.
since Limit $y=1$, and

$$
x \rightarrow 0-
$$

$$
\text { Limit } y=0 \text {, lef't and }
$$ $x \rightarrow 0+$

olght limits at $x=0$ are both finite but different.
3. OTHER TYPES OF DISCONTINUITIES:
(s) $y=x^{x}$ is undefined for

$x=0$, but Limst $y=1$.
$x \rightarrow 0+$
The function is everywhere discontinuous for $x<0$.
(b) $y=x^{\frac{1}{x}}$ is undef'sned for $x=0$, but $\begin{array}{r}\text { Limit } y=0 . \\ x \rightarrow 0+\end{array}$

The function is everywhere alscontinuous for $x<0$.

Fig. 100
(c) By halving the sides $A C$ and $C B$ of the Isosceles triangle ABC, and continuing this process as shown, the "saw tooth" path between A and $B 1 s$ produced.
This path is continuous w1th constent length. The $n^{\text {th }}$ successive curve of this procession has no unique slope at the set of points whose coordinates, measured from A, are of the form

$$
K \cdot \frac{A B}{2^{11}}, K=1, \ldots, n
$$

(a) The "snowflake" (Von Koch ourve) is the limit of the procession shown.* (Bech side of the original

Fig. 102
equilateral triangle is trisected, the middle segment discarded and an external equileteral triangle built there). The 11 miting curve has finite area, infinite length, and no derivative anywhere.

The determination of length and area are good exercises in numerical series.

[^2](e) The Sierpinski "space-fili1ng" curve is the 1 imit of the procession shown. It has finite ares, Infinite

F1g. 103
length, no derivative anywhere, and passes through every point within the original square.
(f) The Welerstrass function $y=\sum_{0}^{\infty} b^{n} \cdot \cos \left(a^{n} \pi x\right)$, where a is an odd positive integer, b a positive constant less than unity, although continuous has no derivative anywhere if

$$
a b>1+\frac{3 \pi}{2}
$$

BIBLIOGRAPHY

Edverds, J.: Calculus, Memillan (1892) 235.
Hardy, G. H. : Pure Mathematics, Macmillan (1933) 162 ff . Kasner and Newran: Mathemetics and Imagination, Simon and Schuster (1940).
oggood, W. F.: Real Variables, Stechert (2938) Chap. III Plerpont, J. : Real Varłables, Ginn and Co. (1912) Chap. XIV.

SteInheus, H.: Mathematical Snapshots, Stechert (1938) 60.

GLISSETTES

HISTORY: The ides of Qlissettes in somewhat elementary form was known to the ancient Greeks. (For example, the Trammel of Archimedes, the Conchold of N1comedes.) A systematic study, however, wes not made until 1869 when Eesent published s short tract on the matter.

1. DEFINITION: A Glissette is the locus of a point - or the envelope of a curve - carmied by \& curve which slides between given curves.

An interesting and related Glissette is thet generated by a cupve always tangent at a fixed point of a given curve. (See 6 b and 6 c below.)
2. SOME EXAMPIES:
(a) The Glissette or the vertex P of a rigid angle whase sides silde upon two fixed points A and B is an arc of a circle. Furthermore, since P travels on a circie, any point Q of AP describes a Limacon.
(See 4).

Fig. 101
(b) Tremel of Arch1medes.
$A \operatorname{rod} A B$ of $f 1 x e d$ length slldes with 1 ts ends upon two flxed perpendicular lines.
2. The Gilssette of any point P of the rod (or any point rigidly attached) is an Bllipse.
2. The envelope Glissette of the rod itself is the Astroid. (See Envelopes, 3s.)
(c) If a point A of a rod, which peasea alweys through a fixed point 0, moves along a
given curve $r=f(\theta)$, the Glis-
sette of a point P of the rod k undta diatant from A te the Conchald

$$
r=f(\theta)+k
$$

of the given curve. [See
Mor1tz, R. E., U. of Wesh. Pub.
1923, for pletures of many

Fig. 105
varieties of this family,
where the base curve is $\left.r=\cos \left(\frac{p \theta}{q}\right)\right]$.
3. THE POINT GLISSETIE OF A CURVE SLIDING BETWEEN IWO LINES AT RIGHT ANGLES (THI x, y AXBS):

If the curve be given by $p=f(\varphi)$ referred to the carried point P, then
$y=p=f(\varphi)$ and $x=f\left(\varphi+\frac{I}{2}\right)$
are peranetric equations of
the Glissette traced by P.

For example, the Astroid
$p=\sin 2 q$, referred to 1ts conter, has the Glissette

$$
x=\sin 2 \varphi, \quad y=-\sin 2 \varphi
$$

(s segment of $x+y=0$) se the locus of 1 ts center as 1t slices between the x end y axes.
4. A IRTAVGIS TOUCHING TWO FIXED CIRCLES:

Consider the envelope of a side $B C$ of a given triangle ABC, two of whose sides touch fixed circles with centers X, Y. As this triangle moves, lines

F18. 107 parallel to the sides are I1nes flxed to the triangle. Let the efrcle described by A^{\prime} meet the parsilel to BC through A ' in D. Then angle $D A^{\prime} X=$ angle $A^{\prime} B^{\prime} C=$ angle ABC , all conatant, and thus D is a fixed point of the circie. The perpendicular DP from D to BC is the altitude of the invarlable triangle $A^{\prime} B^{\prime} C^{\prime}$ and thus $B C$ touches the circle with that altitude as radius and center D.

The point Glissettes (for example, any point F of $A^{\prime} C^{\prime}$) of the triangle are Limacons.
5. GENERAL THBOREM: Any motion of B configuration In its plane can be represented by the roiling of 是 certain detorminate curve on another determinste curve. This rectuces the problem of Glissettes to that of Rouletter.

Fig. 108 A simple illustretion is the tramuel $A B$ sliding upon two perpendioular ilnes. I, the inatantaneous center of rotation of $A B$, Ites elways on the fixed circle with center 0 and radius $A B$. This point also lies on the efrele having AB as diemeten - a circle carried with $A B$. The action then is as if this smaller circle were rolling internally upon a fixed oirole twice as large.

Hence, any point of AB describes an Ellipse and the envelope of $A B$ is the Astroid.
6. GENERAZ ITTEMS:
(a) A Parabole alides on the x, y axes. The locus of the vertex 1s:

$$
x^{2} y^{2}\left(x^{2}+y^{2}+3 a^{2}\right)=a^{6} ;
$$

the focus 1s:

$$
x^{2} y^{2}=a^{2}\left(x^{2}+y^{2}\right)
$$

(b) The path of the center of an Bllipse touching s straight line alweys at the same point is

$$
x^{2} y^{2}=\left(a^{2}-y^{2}\right)\left(y^{2}-b^{2}\right)
$$

(c) A Parabola slides on a straight line touching it at a flxed point of the line. Ire locus of the foous is an Hyperbols.
(d) The bar AFB, with PA $=a, P B=r$, moves with 1 ts ends on a simple closed curve. The difference between the area of the curve and the area of the locus described by P is rab.

F1g. 109
(e) The vertex of a carpenter's square moves upon A circle while one arm pesses through a

F1g. 110 fixed point F. The envelope of the other srm is a conic with F as focus. (Hyperbola if F is outside the circle, Bllpae if inside, Perabola if the circle is \& line.) (See Conics 16.)

BTBLIOGRAPHY

American Mathematical Nonthly: v 52, 384.
Besent, W. H. : Roulettes and Gl1ssettes, London (1870). Encyclopaedis Bitonnice, 14th Bd., "Curves, Speolal." Walker, G.: National Mathemstics Magezine, 12, 13 (1937-8, 1938-9).

HYPERBOLIC FUNCTIONS

HISTORY: Of disputed origin: elther by Msyer or by Riccati in the 18 th century; elaborated upon by Lambert (Who proved the irpationality of π). Further investigated by Gudermenn (1798-1851), a tescher of Welerstress. He complied 7 -place tables for logarithms of the hyperbolic Iunctions in 1832.

1. DESGRIPTION: The se functions are defined as follows:

$$
\begin{aligned}
& \sinh x=\frac{\left(e^{x}-e^{-x}\right)}{2}, \cosh x=\frac{\left(e^{x}+e^{-x}\right)}{2}=\sqrt{\left(1+\sinh ^{2} x\right)} \\
& \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{1}{\tanh x}, \\
& \operatorname{sech} x=\frac{1}{\cosh x}, \operatorname{coch} x=\frac{1}{\sinh x} .
\end{aligned}
$$

51g. 111
2. INTERRTSIATIONS:
(a) Inverge Relationa:
arc $\sinh x=\ln \left(x+\sqrt{x^{2}+1}\right), x^{2}<a ;$
arc $\cosh x=\ln \left(x \pm \sqrt{x^{2}-1}\right), x>1 ;$
arc $\tanh x=\left(\frac{1}{2}\right) \ln \left[\frac{(1+x)}{(1-x)}\right], x^{2}<1$;
arc $\operatorname{coth} x=\left(\frac{1}{2}\right) \ln \left[\frac{(x+1)}{(x-1)}\right], x^{2}>1$;
arc sech $x=\ln \frac{1}{x} \pm\left(\sqrt{\frac{1}{x^{2}}-1}\right), 0<x^{2} \leq 1 ;$
$\operatorname{arccsch} x=\ln \frac{1}{x}+\left(\sqrt{\frac{1}{x^{2}}+1}\right), x^{2}>0$.
(b) Identities:
$\cosh ^{2} x-\sinh ^{2} x=1 ; \operatorname{sech}^{2} x=1-\tanh ^{2} x ;$
$\operatorname{csch}^{2} x=\operatorname{coth}^{2} x-1$;
$\sinh (x \pm y)=\sinh x \cdot 00 \operatorname{sh} y \pm \cosh x \cdot \sinh y ;$ $\cosh (x \pm y)=\cosh x \cdot \cosh y \pm \sinh x \cdot \sinh y ;$
$\operatorname{ainh} 2 x=2 \sinh x \cdot \cosh x$;
$\cosh 2 x=\cosh ^{2} x+s 1 n^{2} x ;$
$\tan (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y} ; \sinh \frac{x}{2}= \pm \sqrt{\frac{\cosh x-1}{2}} ;$

$$
\cosh \frac{x}{2}=\sqrt{\frac{\cosh x+1}{2}}
$$

$\sinh x+\sinh y=2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2}$;
$\cosh x+\cosh y=2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2} ;$
$\sinh 3 x=4 \sinh { }^{3} x+3 \sinh x$;
$\cosh 3 x=4 \cosh ^{3} x-3 \cosh x$;
$(\sinh x+\cosh x)^{k}=\sinh k x+\cosh k x$.
(c) Differentials and Integrals:

$d(\sinh x)=\cosh x \cdot d x ;$	$\int \tanh x d x=\ln \cosh x ;$
$d(\cosh x)=\sinh x d x ;$	$\int \operatorname{coth} x d x=\ln \|\operatorname{lathh}\| x ;$
$d(\tanh x)=\operatorname{sech}^{2} x d x ;$	$\int \operatorname{sech} x d x=\operatorname{arc} \tan (\sinh x)=$
$d(\operatorname{coth} x)=-\operatorname{csch}^{2} x d x ;$	$\int \operatorname{csch} x d x=\ln \left\|\tanh \left(\frac{x}{2}\right)\right\| ;$

$d($ asch $x)=-$ eech $x \cdot \tanh x d x$;
$d(\operatorname{asch} x)=-\operatorname{cach} x \cdot \operatorname{coth} x d x ;$
$d(\operatorname{arcc} \sinh x)= \pm \frac{d x}{\sqrt{x^{2}+1}} ; d(\operatorname{arc} \cosh x)= \pm \frac{d x}{\sqrt{x^{2}-1}} ;$
$d(\operatorname{arc} \tanh x)=\frac{d x}{\left(1-x^{2}\right)}=d(\operatorname{arc} \operatorname{coth} x), \underset{\text { vale }) ;}{(\text { In } d \text { feerent inter- }}$
$d\{\operatorname{arc} \operatorname{sech} x\}= \pm \frac{d x}{x \sqrt{1-x^{2}}} ; d(\operatorname{arc} \operatorname{cech} x)=\frac{t d x}{x \sqrt{1+x^{2}}}$
(called the "Eudermannien") $x=\int_{0}^{y} \sec y d y=\ln |\operatorname{lec} y+\tan z|$.
3. ATTAOHVENT TO THE RECTANGUAAR HYFERBOLA: A Comperison With the trigonometric (circular) functions is es follows.

Fig. 112

For the sheded eactore (A):
$\left\{\begin{array}{l}x=a \cdot \cos t \\ y=a \cdot b 1 n t\end{array}\right.$.

$$
\left\{\begin{array}{l}
x=\mathrm{e} \cdot \mathrm{cosh} \mathrm{t} \\
y=\mathrm{e} \cdot \sinh t
\end{array}\right.
$$

$$
d A=\left(\frac{1}{2}\right) \rho^{2} d \theta,
$$

$\theta=\arctan \frac{Y}{x}=t$, $\theta=\operatorname{arc} \tan \frac{y}{x}=\operatorname{src} \tan (\tanh t)$,
$d \theta=4 t$.
$d 0=\frac{a t}{\left(\cosh ^{2} t+\theta \operatorname{shn}^{2} t\right)}$

But

$\rho^{2}=a^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=A^{a}$, $p^{2}=a^{2}\left(\cosh ^{2} t+8 \operatorname{lnh}^{2} t\right)$,
and thus

$$
A=\left(\frac{2}{2}\right) \int_{0}^{t} s^{2} d t=\frac{a^{2} t}{2} .
$$

In althser ceab:

$$
t=\frac{2 A}{a^{2}},
$$

$\left\{\begin{array}{l}x=a \cdot \cos \frac{2 A}{a^{z}} \\ y=a \cdot \sin \frac{2 A}{a^{2}} .\end{array}\right.$
or

Thus the Hyperbolio functions are attached to the Reotangular Hyperbola in the same manner that the trigonometric functions are attached to the ofrcle.
4. ANALYTICAL RELATIONS WITH THE TRIGONOMETRIC FUNCTIONS: The Bular forms:

$$
e^{\{x}=\cos x+1 \cdot \sin x ; \quad e^{-X}=\cos (1 x)+1 \cdot \sin (1 x) ;
$$

produce:

$$
e^{-1 x}=\cos x-1 \cdot \sin x ; e^{x}=\cos (1 x)-1 \cdot \sin (1 x) ;
$$

$$
\begin{array}{ll}
\cosh (1 x)=\cos x ; & \cosh x=\cos (1 x) ; \\
\sinh (1 x)=1 \cdot \sin x ; & \text { ginh } x=-1 \cdot \sin (1 x) ;
\end{array}
$$

froce which othor relations may be darived.
5. series representantons
$\sinh x=\sum_{1}^{\infty} \frac{x^{2 k-1}}{(2 k-1)!}, \quad x^{2}<x$
coak $x=\sum_{0}^{\pi} \frac{x^{2 k}}{(2 k)!}, \quad x^{2}<\alpha ;$
tanh $x=x-\frac{x^{3}}{3}+\frac{2 x^{3}}{15}+\frac{17 x^{7}}{315}+\ldots, \quad x^{2}<\frac{\pi^{2}}{4} ;$
coth $x=\frac{1}{x}+\frac{x}{3}-\frac{x^{3}}{45}+\frac{2 x^{5}}{945}-\frac{x^{7}}{4725}+\ldots, x^{2}<\pi^{2} ;$
日ech $x=1-\frac{1}{2} x^{2}+\frac{5}{4!} x^{4}-\frac{61}{6!} x^{0}+\frac{1385}{8!} x^{8}-\ldots, x^{2}<\frac{\pi^{2}}{4} ;$
$\operatorname{cach} x=\frac{1}{x}-\frac{x}{6}+\frac{7 x^{3}}{360}-\frac{31 x^{5}}{15120}+\ldots, x^{2}<\pi^{2}$;
$\operatorname{Arc⿻} \sinh x=x-\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}-\frac{2 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\ldots, x \leq 1$,
$=$ In $2 x+\frac{1}{2} \cdot \frac{1}{2 x^{2}}-\frac{1 \cdot 3}{2 \cdot 4} \frac{1}{4 x^{4}}+\frac{2 \cdot 3 \cdot 5}{2 \cdot 1 \cdot 6} \frac{1}{6 x^{8}}+\ldots, x \geq 2$;
arc coah $x=\ln 2 x-\frac{1}{2} \frac{1}{2 x^{2}}-\frac{1 \cdot 3}{2 \cdot 4} \frac{1}{4 x^{4}}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{1}{6 x^{0}}+\ldots, x \geq 2$;
are $\tanh x=\frac{\pi}{2} \frac{x^{2 k-1}}{2 k-1}$;
gxi $x=\arctan (\tanh x)=x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{61}{5040} x^{7}+\ldots$
6. APFLICATIONS:
(a) $y=s \cdot \cosh \frac{x}{a}$, the Cetenary, is the form of a flexible chain hanging from two aupports.
(b) These functions play a dominant role in electrical comunication circuits. For example, the engineer prefers the convenient hyperbolic form over the exponential form of the solutions of certaln types of problems in transmisaion. The voltage V (or curvent I) satisfies the differential equation

$$
\frac{d^{2} v}{d x^{2}}=2 y \cdot v
$$

where x is diatence along the line, y the unit shunt admittance, and z the sertes impedance. The solution:

$$
V=V_{r} \cdot \cosh \times \sqrt{y z}+I_{r} \cdot \sqrt{\frac{z}{y}} \cdot \sinh \times \sqrt{y z},
$$

gives the voltage in terms of voltage and current at the recelving end.
(c) Mapping: In the general problom of conformal.
world maps, hyperbolic functions enter algnificently. For instance, in Mercator's (1512-1594) projection from the center of the sphere onto 1 ts tangent cylinder with the N-S 11 ne as axis,

$$
x=\theta, \quad \varphi=g d y,
$$

where (x, y) is the projection of the point on the sphere whose latitude and longltude are φ and θ, respeotively. Along a rhumb IIne,

$$
\varphi=g d(\theta \cdot \tan \alpha+b),
$$

where a $\ddagger s$ the inclination of a straight course (11ne) on the mep.

BIBLIOGRAPHY

Kennelly, A. I.: Applic, of Hyp. Functions to Zlec. Bngx. Problems, NeGrew-F111 (1912).
Mermiman and Woodward: Higher Mathematios, John Wiley (1896) 107 ff.

Slater, J. C.: Miorowave Transmisalon, McGraw-H111 (1942) 8 ff.
Ware and Reed: Communication Circuits, John W11ey (1942) 52 if.

INSTANTANEOUS CENTER OF ROTATION and THE CONSTRUCTION OF SOME TANGENTS

1. DBPINIPION: A rigid body moving in any menner whatsoever in a plane has an Instantaneous center of rotation. This center may be loceted if the direction of motion of any two points A, B of the body are known. Let their respective velocities be V_{1} and V_{2}. Drew the perpendioulars to V_{1} and $V_{2} A t A$ and B. The center of rotation is their point of intersection H. For , no point of HA can move toward A or H (since the bocy is rigid) and thus all points must move parallel to V_{1}. Similarly, all points of HB move

F1g. 113 parallel to V_{2}. But the point H camot move parallel to both V_{2} and V_{z} and so must de at reat.
2. CENTRODE: If two points of a rigid body move on known curves, the instantaneous center of rotation of any point P of the body Is H, the interaection of the normals to the two curves. The locus of the point H is called the Centrode. (Chasles)

Fig. 114
3. EXAMPIBS:

F1g. 115
(e) The E111pse is produced by the Trammel of Archimedes. The extremities A, B of a rod move along two perpendicular lines. The path of any point P of the rod Is an Ellipse.* AH and BH are normals to the alrections of A and B and thus H \& the center of rotation of any point of the rod. HP Ia normal to the path of P and 1 ts perpendiouler PT is the tangent. (See Trooholds, 3c.)

* The peth of P ie an Ellipse if A and B move along any two intarsecting lines.

FIg. 116
(b) The Concho1d* is the path of P_{2} and P_{2} where A, the midpoint of the constant distance $P_{1} P_{2}$, moves along the flxed line and $\mathrm{P}_{1} \mathrm{P}_{2}$ (extended) passes through the flxed point 0. The point of $P_{1} P_{2}$ passing through 0 has the dreation of $\mathrm{P}_{1} \mathrm{P}_{2}$. Thus the perpendiculars $O H$ and $A H$ locate H the center of rotation. The perpendiculars to
$P_{1} H$ and $P_{2} H$ at P_{2} and P_{2} rospectively, are tangents to the curve.
> * (For a more general derintition, aee Conchoid, 1.)
(c) Fon the Limacon, B moves along the cirele while OBP rotates about 0 . At any

Instant B moves normsl to the radius BA while the point on $O P$ at 0 moves in the direction $O P$. The center of rotation is thus \mathbb{H} (a point of the ofrcle) and the tangent to the Ifmacon desoribed by P is perpendicular to PH.

Fig. 117
(d) The Isoptic of a curve is the Iocus of the Intersection of two tangents which neet at a corstant angle. If these tangents meet the ourve in A and B, the nommels there to the given curve meet in H. This is the center of rotation of any point of the rigid body formed by the constant angle. Thus HP is nomal
to the path of P. For example, (see Glissettes, 4) the locus of the vertex of a triangle, two of whose sldes touch fixed circles, is a Limacon. Normsls to these tangents pass through the centers of the oircles and make a constant angle with each other. They meet at H, the center of rotetion, and the locus of H is accordingly a circle through the centers of the two given circles.

F1g. 118
(e) The point Glissette of a curve is the locus of P, a point rigidily attached to the
 curve, as that curve slides on given fixed curves. If the points of tangency are A and B, the norrale to the fixed curves there meet in H, the center of rotation. Thus HP is normal to the path of P.
718. 119

INTRINSIC EQUATIONS

INTRODUCTION: The choice of reference system for a perticular curve may be diotated by its physical characteristics or by the particular type of information desired from 1 ts properties. Thus, e system of rectangular coordinates will be selected for ourves in whioh slope is of primary importance. Curves which exhibit a centrel property - phyalcel or geometrical - with reapect to a point will be expressed in a polar system with the central point as pole. This is well illustrated in situations involving action under a central force: the path of the earth about the sun for example. Again, if an outstanding feature 13 the distance from a fixed point upon the tangent to a curve - as in the gereral problem of Caustics - a system of pedal coordinates will be selecteá.

The equations of curves in each of the se syatems, however, are for the most part "local" in character and are altered by certain transformations. Let a traneformatlon (within a particular system or from system to aystem) be such that the measures of length and angle are preserved. Then area, arc length, curvature, number of singular points, etc., vili be invarients. If a enrve can be properly defined in terms of these invariants 1 ts equation would be intrinsic in character and would express quallities of the curve which would not change from system to system.

Two such characterizations are given hore. One, relating arc length and tangential angle, wes introducead by Whewell; the other, connecting erc length and curveture, by Cesáro.

Chasles, M.: F1ato1re de la Gćométrıe, Bruxelles (1881) 548.

Keown and Faires: Mechanism, MoGraw-Hill (1931) Chap. V. N1evenglowsk1, B.: Cours de Géométrie Analytique, I (Par18) (1894) 347 ft .
W1lliamson, B.: Calculus, Longmans, Green (1895) 359.

INTRINSIC EQUATIONS

125
The equation of an involute of a given ourve is obtained directly from the Whewell equation by integration. For example,
the circle:
$\sigma=A \cdot \varphi$
has for an involute: $a=\frac{a \varphi^{2}}{2}$,
the constant of integration determined conveniently.

NOTE: The inclination φ depends of course upon the tangent to the curve at the selected point from which a is messured. If this point were selected where the tengent is perpendioular to the original choice, the Whevell equation would involve the coIunction of φ. Thus, for example, the Cardiold may be given by efther of the equations: $s=k \cdot \cos \left(\frac{\Phi}{3}\right)$ or $s=k \cdot \sin \left(\frac{\varphi}{3}\right)$.
2. THE CESARO BQUATION: The Cesáro equation relates are length and radius of curvature. Such equations are definitive and follow directly from the Whewell equations. For example, consider the general family of Cycloidal. curves:

$$
s=a \cdot \sin b \psi
$$

Here

$$
\begin{aligned}
& R=\frac{d s}{d \varphi}=a b \cdot \cos b \varphi . \\
& R^{2}+b^{2} \cdot s^{2}=a^{2} b^{2} .
\end{aligned}
$$

$$
s=-8 a \cdot \cos \left(\frac{\theta}{2}\right)=-8 a \cdot \cos \left(\frac{\varphi}{3}\right) \text {. }
$$

3. INTRINSIC BQUATIONS OF SOME CURVES:

Ourvs	Whowell Squation	Cosáro Iquation
Antrolid	$a=a \cdot \cos 2 \varphi$	$4 a^{2}+\mathrm{F}^{2}=4 \mathrm{a}^{2}$
Cardiold	$a=8 \cdot \cos \left(\frac{4}{5}\right)$	$a^{2}+9 R^{2}=a^{2}$
Catenary	$\theta=\mathrm{B} \cdot \tan \varphi$	$\mathrm{a}^{2}+\mathrm{a}^{2}=\mathrm{az}$
Cirale	$a=a \cdot \varphi$	$\mathrm{R}=\mathrm{a}$
Ctasold	$\theta=a\left(\operatorname{cec}^{3} \varphi-1\right)$	$729(a+a)^{1 a}=a^{2}\left[9(a+a)^{2}+8^{2}\right]^{3}$
0jcloid	$\theta=a \cdot \sin \varphi$	$a^{2}+R^{2}=a^{2}$
Deltaid	$s=\frac{8 b}{3}$ cas 3φ	$9 \mathrm{a}^{2}+\mathrm{R}^{2}=64 \mathrm{~b}^{2}$
Ep1 - and Hypo-cyaloles	$a=a \cdot 8$ 红 $b \psi^{*}$	$R^{2}+b^{2} \cdot a^{2}=a^{2} b^{2}$
$\begin{gathered} \text { Equiangular } \\ \text { Spiral } \end{gathered}$	$s=a \cdot\left(0^{m \varphi}-1\right)$	$W^{\prime}(8+e)=R$
Involuta of Girola	$\theta=\frac{a+\psi^{3}}{2}$	$2 a \cdot \theta=R^{2}$
Nephroid	$g=6 \mathrm{~b} \cdot \sin \frac{9}{2}$	$4 \mathrm{R}^{2}+a^{2}=36 b^{2}$
Irsotrlx	$8=\underline{\square}+\ln$ asc φ	$a^{a}+R^{2}=a^{2} \cdot 8^{a s / a}$

* $\mathrm{b}<1$ Ep1.
$\mathrm{b}=1$ Ordinary.
b >1 Hypo.

BIBLIOGRAPHY

Boole, G.: Differential Equations, London, 263. Cambridze Philosophical Prenssctions: VIII 689; IX 150. Edwands, J.: Calculus, Vacm111en (1892).

INVERSION

HISTORY: Geometrical inversion seems to be due to Steiner ("the greatest geometer since Apollonius") who indicated a knowledge of the subject in 1824. He wes closely f'ollowed by quetelet (1825) who gave some examples. Apparentiy independently discovered by Bellavitis In 2836, by Stubbs and Ingram in 1842-3, and by Lord Kelvin in 1845. The latter employed the 1dea with conspicuous success in his electricsl researches.

1. DEFINITION: Consider the cirole with center 0 and radius k. Two points A and \bar{A}, collinear with 0 , are mutually Inverse w1th respect to
this oircle 11

$$
(O A)(\overline{O A})=k^{2} .
$$

In polar coordinates with 0 as pole, this relation 18

$$
r \cdot p=k^{2} ;
$$

in rectangular coordinates:

FIg. 122

$$
x_{1}=\frac{k^{2} x}{x^{2}+y^{2}} ; \quad y_{1}=\frac{k^{2} y}{x^{2}+y^{2}}
$$

(If thie product is negative, the points are negatively inverse and lie on opposite sides of 0.)

Two ourves are mutualiy inverse if every point of each hes an inverse belonging to the other.
2. CONSTRUCTION of INVERSE POINTS:

Fig. 123

For the point \bar{A} inverse to A, draw the tangent A ? , then from P the perpendloular to OA. From similar rlght trianglea
$\frac{O A}{k}=\frac{k}{O A}$ or $(O A)(\overline{O A})=k^{2}$.

Compess Construction: Drew the circle through 0 witit center at A, meeting the circle of inversion in P, Q. Circles with centers P and Q through 0 meet in \bar{A}. (For proof, consider the similar 1sosceles trisnglea OAP and POA.)
3. PROPSRTIES:
(a) As A approsches 0 the distance $O \bar{A}$ increases indefinitely.
(b) Points of the airele of inversion are invariant.
(o) Circles orthogonal to the circle of inversion are inveriant.
(d) Angles between two curves are preserved in megnitude but reverged in direction.
(e) Circles:
$r^{2}+A \cdot r \cdot \cos \theta+B \cdot r \cdot \sin \theta+C=0=x^{2}+y^{2}+A x+B y+C$ invert (by $r_{\rho}=1$) into the circles:
$1+A \cdot \rho \cdot \cos \theta+B \cdot \rho \cdot \operatorname{aln} \theta+C \rho^{2}=C\left(x^{2}+y^{2}\right)+A x+B y+1=0$
unless $C=0$ (s circle through the origin) in which case the circle inverts into the Inne:

$$
1+A \cdot p \cdot \cos \theta+B \cdot p \cdot \sin \theta=1+A x+B y=0
$$

(f) Lines through the origin:

$$
A x+B y=0=A \cdot \cos \theta+B \cdot \sin \theta
$$

sre unaltered.
(g) Asymptotes of a eurve Invert Into tangents to the inverse curve st the origin.
4. SONE INVERSIONS: $(k=1)$
(s) With center of inversion
at ita vertex, \& Parabola inverts into the Cissold of Diocles.
$y^{2}=h x \longleftrightarrow \frac{y^{2}}{\left(x^{2}+y^{2}\right)}=h x$,
or $\quad y^{2}=\frac{h x^{3}}{(1-1 \mathrm{cx})}$

P1g. 124
(b) With center of Inversion
at a vertex, the Rectangular Hyperbola inverta into the ordinary Strophoid.
$x^{2}-y^{2}+2 a x=0 \leftrightarrow x^{2}-y^{2}+$ $\operatorname{2ax}\left(x^{2}+y^{2}\right)=0$,
or $y^{2}=x^{2} \cdot \frac{1+2 a x}{1-2 a x}$.

I16. 125
(c) With center of invorsion at its center, the

Rectangular Hyperbola inverte

into a Leminiacste.

$r^{2} \cos 2 \theta=1 \longleftrightarrow p^{2}=\cos 2 \theta$.
(d) With center of Inversion at a focus, the Conica invert into I1mscons.

$$
r=\frac{1}{(a+b \cdot \cos \theta)} \longleftrightarrow p=a+b \cdot \cos \theta .
$$

(e) With center of Inversion at their center, confocal Central Conics Invert
into a famtly of ovals and
"figures eight."

$$
\begin{gathered}
\frac{x^{2}}{\left(a^{2}+\lambda\right)}+\frac{y^{2}}{\left(b^{2}+\lambda\right)}=1 \\
\longleftrightarrow \frac{x^{2}}{\left(a^{2}+\lambda\right)}+\frac{y^{2}}{\left(b^{2}+\lambda\right)}= \\
\left(x^{2}+y^{2}\right)^{2}
\end{gathered}
$$

F1g. 128
5. MECHANICAL INVERSORS:

F18. 129
The Posucellien Cell (1864), The Fart Croseed Parallelthe first mechanicsl
inversor, is formed of two rhombuses as shown. Its appearance ended a long searoh for a machine to oonvert circular motion into Innear motion, a problem that was almost unanimously agreed insoluble. For the inversive propenty, draw the circle through F with center A. Then, by the secant property of circles,
$(O P)(O Q)=(O D)(O C)$
$=(a-b)(a+b)=a^{2}-b^{2}$.
Moreaver,
$(P O)(P R)=-(O P)(O Q)=b^{2}-a^{2}$ ie directions be essigned.
points $0, P, Q, F$ takon on a Ine parallel to the bases $A D$ and $B C$. . Draw the cirole through D, A, P, and Q meeting $A B$ in F. By the secant property of ctrcles,
$(B F)(B A)=(B P)(B D)$.
Here, the distances BA, BP, and $B D$ are constant and thus BF is constant. Accordingly, as the mechanian is deformed, F is a fixed point of AB. Again,
$(O P)(O Q)=(O F)(O A)=$ constant
by virtue of the foregoing. Thus the Hert Cell of four bars is equivelent to the Peaucellier arrangement of elght bars.

For ine motion, an extra bar is added to each mechan1sm to describe a circle through the ifxed point (the center of inversion) as shown in Fig. 130.

Fig. 130
*These remain collinear as the ifnicago io deformet.

In each mechanlsm, the Ine generated 1 s perpendioular to the line of flxed potnts.
6. Since the inverse A of \bar{A} lies on the polar of \bar{A}, the subject of inversion is that of poles and polars, with respect to the given circle. The
points $0, P, A$, and \mathbb{A} form an harmonic set - that $1 s, A$ and A divide the distance OP in "extreme and mear ratio", A generalization of inversion leads to the theory of polars with respect to curves other than the circle, V1z., conles. (See Conics, 6 ff .)

P1g. 131
7. The process of inversion forms an expeditious method of aolving a varlety of problems. For example, the celebreted problem of Apollonius (see Circies) is to congtruct a circle tangent to
three given circles. If the given circles do not intersect, each radius is increased by a length a so that two are tangent. This point of tengency is taken as center of 1 nversion so that the inverted conflguration is composed of two parallel lines and a circle. The circle cangent to these three
eloments is easily obtained by straightedge and compass. The inverse (with respect to the same otrole of inversion) of

FIg. 132
this ofrole followed by an alteration of its radius by the length $\frac{\text { a }}{}$ is the required olrcle.

INVERSION

8. Inversion is a helpful means of genersting theorems or geometrical properties which are otherwise not readily obtainable. For example, consider the elementary theorem:

Fig. 133 "If two opposite angles of a quadrilateral OABC are supplementary it is cyclic." Let this configuration be inverted with respect to 0 , sending A, B, C into $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \mathrm{C}$ and their circuncircle Into tine line $\overline{A C}$. Obviously, \bar{B} lies on this line. If B be alLowed to move upon the circle, $\overline{\mathrm{B}}$ noves upon a line. Thus

TThe locus of the intersection f circles on the efxed points $0, \bar{A}$ and $0, \bar{C}$ meeting at a constant angle (here $\pi-\theta$) is the ine $\overline{A C}$."

BIBLIOGRAPIY

Adier, A.: Geometrischen Konstruktionen, Leipsig (1906) 37 ff .
Courant and Robbins: What is Mathemetics? Oxford (1941) 158.

Deus, P. H.: College Geometry, Prentice-Hall (1941) Chap. 3 .
Johrson, F. A.: Modern Geometry, Houghton-Mifflin (1929) 43 ff.
Shively, L. S.: Vodern Geometry, John Wiley (1939) 80. Yates, R. O.: Tools, A Mathematical Siketch and Model Book, L. S. U. Press (1941).

INVOLUTES

HISTORY: The Involute of a Circle was discussed and utilized by Huygers in 1693 In comnection with his stuc: of clocks without pendulums for service on ships of the ses.

1. DESCRIPTION: An involute of a curve is the roulette of a aolected point on a IIne that rolls (as a tangent) upon the curve. On, it is the path of a point of a string tautly unwound from the curve. Two facts are evident at once: since the ine is at any point normal to the involute, all involutes of a given curve are paraliel to each other, Fig. $134(\mathrm{a})$; further, the evolute of a curve is the envelope of its nomals.

(a)

(b)

The details that follow pertain only to the Involute of a Circle, Fig. 134(b), a curve interesting for its applicstions.
2. EOUATTONS:

$$
\left\{\begin{array}{l}
x=a(\cos t+t \cdot s \ln t) \\
y=a(\sin t-t \cdot \cos t)
\end{array}\right.
$$

$p^{2}=r^{2}-a^{2}($ with respect to 0$) . \sqrt{x^{2}-a^{2}}=a \theta+a r c \cos \left(\frac{2}{r}\right)$. $2 E=9 \theta^{2}$.

$$
R^{2}=2 u s(=a t) .
$$

3. METRICAL PROPBRTTES:

$$
\left.A=\frac{p^{3}}{6 a} \text { (bounded by } O A, O P, A P\right) \text {. }
$$

4. GENERAL ITEMS:
(a) Its normsi is tangent to the circle.
(b) It 1s the loous of the pole of an Equiengular spiral rolling on a circle concentric with the bsse circle (Mexwell, 1849).
(c) Its pedel with respect to the center of its baso oircle is a spirsi of Archimedes.
(d) It is the 2ocus of the intersection of tangent: drewn at the points where any ordinste to $O A$ meets the circle and the corresponding cycloid having its vortex st A.
(e) The limit of a succession of involutes of any given curve is an Equiangular sptral. (Seo Spirals, Equiangular.
(f) In 1891, the dome of the Roysi Observatory at Greenwleh wes constructed in the form of the surface of rovolution generated by an arc of an involute of a aircle. (Mo. Notices Roy. Astr. Soc., v 51, p. 436 .)
(g) It is a special case of the Euler Spirals.
(h) The roulette of the center of the attached base circle, as the involute rolls on a line, is a parebole.

involutes

(1) Its Inverse with respect to the base oirclo is a spirsl trectrix (a curve which in polar coordinetes has constant tangent length).
(j) It is used frequently in the design of cams
(k) Concerning its use in the construction of gear teeth, consider its generation by rolling a circle together with its plane along a line, R1g. 135. The path of a selected point P
of the line on the moving Diane is the involute of e alrole. At any instant the conter of rotation of P is the point C of the circle. Thus two circles with fixed centers could have thenp involutes tangent at P with this point of tangency always on the common internal tangent (the line of action) of the two

F1g. 135
circles. Accordingly, s
constant velooity ratio is transmitted and the fundamental law of gearing is satisfled. Advantages over tho older form of cycloldal gear teoth include:

1. velocity ratio unaffocted by changing distance between centers,
2. constant pressure on the ayes,
3. sibcle curvacure teeth (thus easier cut),
4. more uniform wear on the teeth.

BIBLIOGRAPEY

Amor1can Nathematical Monthly, v 28 (1921) 328. Byerly, w. E.: Celculus, Ginn (1889) 133.
Encyclopaecis Britannica, 14th Ed., under Curves, Specie1".
Huygens, C.: Works, la Société Hollandaise des Sclences (1888) 514.

Keown and Fa1res: Mecheniem, Megraw-H111 (1931) 61, 125.

ISOPTIC CURVES

HISMORY: The origin of the notion of 1soptic curves 1 s obscure. Among contributors to the aubject will be found the names of Chasles on iscptics of Conics and Epitroohoids (1837) and la Hire on those oi Cyelolds (1704). *

1. DESCRIPTION: The locus of the intersection of tangents to a curve (or curves) meeting at a constant angle a sa the Isoptic of the pliven curve (or curves). If the constant angie be $\pi / 2$, the isoptic is called the Orthoptic. Isoptic curves are in fact Glissettes.

A special case of orthoptics is the Pecal of a ourve with respect to a point. (A carpenter's square moves with one edge through the fixed point while the other edge forma e tangent to the curve).
2. IILUSIRATION: It 1 s well known that the opthoptic of the Parabola 13 1ta directrix while those of the Central Conics are a pelr of concentric Circles. These are immediate upon eliminating the parameter m between the equetions in the sets of perpendicular tangents that follow:

B1.6. 136
$\left\{\begin{array}{l}y-m x \pm \sqrt{a^{2} m^{2}+b^{2}}=0 \\ m y+x \pm \sqrt{a^{2} \pm b^{2} m^{2}}=0 .\end{array}\right.$

$$
\left\{\begin{array}{l}
y-m x+p y^{2}=0 \\
m^{2} y+m x+p=0
\end{array}\right.
$$

(The Orthoptso of the Hyperbola is the olrcle through the focl of the corresponding Ellipse and vice verse.)
3. GENERAL ITEMS:
(a) The Orthoptic Is the envelope of the olpcle on PQ as a dlemeter. (P1g. 157)
(b) The locus of the intersection of two perpendicular normale to a curve is the ortinoptic of 1 ts Evolute.
(c) Tengent Construction: F1g. 137. Let the normals to the given ourve at P and Q meet in H. This is the Instentaneour center of rotetion of the rigid body rormed by the constent angle at R. Thus HR 1a

E1g. 137 normal to the Isoptic egnerated by the point R.
4. EXAMPLES:

Given Curve	Isoptia Curve
Cycloid	Ourtate or Prolate Cyoloid
Epicyolo1d	Epitrocho1d
Sinusoidal Spiral	Sinusoidel Spiral
Two Circles	I,macons (see Glissettes, 4)
Farabols	Hyperbole (same Iocus and airectrix)

Given Curve	Orthoptic Curve
Two Confocel Conice	Concentris Circle
Hypocycloid	$x=(a-2 b) \cdot \sin \left[\frac{a}{(a-2 b)}\right]\left(\frac{\pi}{2}-\theta\right)$
Deltold	Ita Inseribed Circle
Cardiold	A Circle ani a Limacon
Aetrold: $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$	Guadrifolium: $r^{2}=\left(\frac{a^{2}}{2}\right) \cdot \cos ^{2} 2 \theta$
S1nuao1del Sp1ral: $x^{n}=a^{n} \cos \theta$	Sinuaotdal Spirai: $r=a \cdot \cos ^{k}\left(\frac{\theta}{k}\right)$ where $k=\frac{(n+1)}{n}$
$y^{2}=x^{3}$	$729 \mathrm{~J}^{2}=180 x-16$
$3(x+y)=x^{3}$	$81 y^{2}\left(x^{2}+y^{2}\right)-36\left(x^{2}-2 x y+5 y^{2}\right)+128=0$
$\begin{gathered} x^{2} y^{2}-4 a\left(x^{3}+y^{3}\right)+ \\ 18 a^{2} x y-2 y e^{4}=0 \end{gathered}$	$x+y+2 a=0$

NOIE: The α-Isoptic of the Parabole $y^{2}=4 a x$ is the Hyperbola $\tan ^{2} \alpha+(a+x)^{2}=y^{2}$. $4 a x$ and those of the Ellipse and Hyperbols: (top and bottom signs resp.):
$\tan ^{2} \alpha \cdot\left(x^{2}+y^{2}-a^{2} \mp b^{2}\right)^{2}=4\left(a^{2} y^{2}+b^{2} x^{2} \mp s^{2} b^{2}\right)$.
(these include the $\pi-a$ Isoptics).

BIBLTOGRAPHY

Duporcq: L'Intern. d. Nath. (1896) 291.
Encyclopeedie Britannics: 14 th EA., "Curves, Special." Hilton, H. : Plane Algebraic Curves, oxford (1932) 169.

KIEROID

HISTORY: This curve was dovised by P. J. Kiernan in 1945 to estabilsh a family relationship among the Conchoid, the Cisso1d, and the Strophoid.

1. DESCRTPIION: The center B of the circle of radiue a moves along the ilne BA . O is a fixed point, $£$ units distant from AB. A secant is drawn through 0 and D, the midpoint of the chord cut from the line DE which is parallel to $A B$ and bunits distant. The locus of P_{1} and P_{2}, points of intersection of $O D$ and the circle, is the Kleroid.

Fig. 138
The curve has a double point if $c<a$ or a cusp if $c=a$. There are two asymptotes as shown.

KIEROID

2. SPEOTAL CASBS: Three special ceses are of importance:

If $b=0$, the
curve is \& Conchold of
NI comedes.
 curve is a C1ssold (plus an Asymptote).

If $b=a=-c$ (points 0 and A coincide), the curve is a Strophoid (plus an Asymptote).

FIg. 239

It $1 s$ but an exercise to form the equations of these curves after sultable chofce of reference axes.

LEMNISCATE OF BERNOULLI

HISHOF: I: Iscovered and discussed by Jecques Bernoulli in 1694. Also studied by C. Meslaurin. James Kett (1784) of stean engine fame is responsible for the crossed parallelogram mechanism given at the end of this section. He used the device for approyimate Itne motion thereby reducing the helght of his englne house by ilne feet
2. DESCRIPTION:

The Lemnlscate 18 a special Cassinian Curve. That 18 , It is the loous of 8 point P the produet of whose distances from two flxed points F_{1}, F_{2} (the foci) 2s unlts apart is constant end equal to a^{2}.

It is the C1ssold of the ciccle of redius a/2 with respect to a polnt 0 distant \& $\sqrt{E} / 2$ untts from 1tb oenter.

Fig. 140
$(\mathrm{F} \perp \mathrm{P})\left(\mathrm{P} z_{\mathrm{P}}\right)=\mathrm{s}^{2}$
A Point-w1se Construction: Let $O X=A \sqrt{2}$. Then, by the secant property of the circle on $\mathrm{F}_{1} \mathrm{P}_{2}$ as dfameter:

$$
(X A)(X B)=8^{2} .
$$

Thus, take $F_{1} P=X B$,
$\mathrm{F}_{2} \mathrm{P}=\mathrm{Xh}$, etc.

$$
\begin{aligned}
& r=O P=O B-O A=A B . \\
& \text { Since } \frac{B 11 a}{B \sqrt{2} / 2}=\frac{3 \ln \theta}{\frac{a}{2}}, \\
& r=8 \cdot \cos a=a \sqrt{\left(1-2 \sin ^{2} \theta\right)}, \\
& r^{2}=a^{2} \cdot \cos 2 \theta .
\end{aligned}
$$

2. BQUATIONS:

$$
\begin{gathered}
r^{2}=a^{2} \cos 2 \theta, \quad \text { or } \quad r^{2}=a^{2} \sin 2 \theta \text {, etc. } \\
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) . \quad\left(y^{2}+y^{2}\right)^{2}=2 a^{2} x y . \\
r^{3}=a^{2} \cdot p,
\end{gathered}
$$

3. METITCAL PROPERTIISS:
$A=a^{2}$.
$L=4 a\left(1+\frac{1}{2 \cdot 5}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 9}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 13}+\ldots\right)($ ell1ptic $)$.
V (of $\mathrm{r}^{2}=\varepsilon^{2} \cos 2 \theta$ revolved about the polar axis)
$=2 \pi e^{2}(2-\sqrt{2})$.
$R=\frac{a^{2}}{3 r}=\frac{r^{2}}{3 p} . \quad \psi=2 \theta+\frac{\pi}{2}$.
4. GENERAL ITEMS:
(a) It is tho Pedal of a Rectangular Hyperbola with respect to 1 ts center.
(b) It is the Inverse of a Rectangular Hyperbole with respect to its center. (The saymptotes of the Hyperbola invert into tengente to the Lemiscate at the origtn.)
(c) It is the Sinusoidal Spiral: $r^{n}=a^{n} \cos n \theta$ for $n=2$.
(d) It is the locus of flex pointe of a family of confocal Ceseinian Curves.
(e) It is the envelope of circles with centers on a Rectangular Hyperbola which pass through its center.

1i) Tangent Construction
S1nce $y=2 \theta+\frac{\pi}{2}$, the normel makes an angle 2θ With the radius vector and 30 w1th the polar axis. The targent is
thus eesily constructed.
(g) Radius of Curvature

Fig. 242
(Fig. 14I) $\mathrm{R}=\frac{\mathrm{a}^{2}}{3 \mathrm{r}}$. The
projection of R on the redius vector is

$$
R \cdot \cos 2 \theta=\left(\frac{a^{2}}{3 r}\right) \cdot \cos 2 \theta=\frac{r}{3}
$$

Thue the perpendicular to the radiue vector st 1 ts trisection point farthest from o meets the normal in C, the center of curveture.
(h) It is the path of a body acted upon by a central force varying inversely as the seventh power of the distence. (See Spirals 2 s and 3 ..)

Encyclopaedie Britamica: 1tth Id., "Curves, Special." Hilton, E.: Plene Alzebraic Curves, Oxford (1932). Phillips, A. W.: Linkwork for the Lemisoate, Am. J. Meth. I $(1878) \frac{386 .}{}$
Wiele1tner, H.: Spezielle ebene Kurver, Leipsig (1908). Williamson, B.: Differential Celculue, Longmans, Green (1895).

Yates, R. C.: Tools, A Mathematical Sketch and Mociel 300k, I. S. T. Press, (1941) 172.

F1g. 142

$$
\begin{array}{l|l}
O A=A B=a ; B C=C P=O C=\frac{a}{\sqrt{2}}, & A B=C D=a \sqrt{2} . \\
\text { Since angle } B O P=\frac{\pi}{2} \text { always, } & A D=B C=a . \\
r^{2}=(B P)^{2}-(O B)^{2}= & D C \text { and are midpoints of resp. } \\
2 a^{2}-4 a^{2} \sin ^{2} \theta, & r^{2}=a^{2} \cos 2 \theta, \\
\text { Or } \quad r^{2}=2 a^{2} \cos 2 \theta . & (\text { See Tools.) }
\end{array}
$$

LIMACON OF PASCAL

HTSTORY: Discovered by Etienne (father of Blatse) Pascal end discussed by Robervel in 1650.
2. MRSCRIPTION:

It is the Dpitrochoid generated by a point rigidly attached to a circle rolling upon an equal fixed circle.

It is the conchold of circle where the ilxed point is on the eimole

3. GBNERAL ITENS:
(a) It is the Pedal of a circle with respect to any point. (If the point $1 s$ on the circle, the pedsl is the Cardioid.) (For a mechanical description, see Tools, p. 188.)
(b) Its Evolute is the Catacauatic of a circle for any point source of light.
(c) It $1 s$ the Glissette of a selected point of an invarieble triangle which slides between two flxed points.
(d) The loous of sny point rigidly attached to A constant angle whose sides toveh two flxed oircles is a pair of Limacons (see GIIssettes 2s and 4).
(e) It 18 the Inverse of a conic w1th respect to a focus. (The inverse of $r=2 s \cdot \cos \theta+k 1 s$ $r(2 a \cdot \cos \theta+k)=0$, an Ellipae, Parabola, or Hyperbola according as $2 a<k, 2 a=k$, $2 a>k$). (See Inversion 4a.)
(f) It is a special Cartesian oval.
(g) It is part of the orthoptic of e Cardioid.
(h) It is the $\operatorname{Tr} 1$ sectrix $10 \mathrm{k}=\mathrm{a}$. The angle formed by the axis and the Iine joining $(a, 0)$ with any point (r, θ) of the curve $1 \mathrm{~s} 3 \theta$. (Not to be confused with the Trisectrix of Macleurin which resembles the Bollum of Descartes.)
(i) Iangent Construction:

The point A of the bar has direction perpendicular to aA while the point of the bar at B has the direction of the bar itself. The normals to these directions meet in H, a point of the afrele. Accordingly, HP is nomal to the peth of P and its perpendicular there is a tangent to the curve.

Since T is the center of rotation of any point rigidly attached to the rolling circle, TP is normal to the path of P and 1 ts porpendicular at P is a tangent.

(a)

(b)
(j) Radius of Curvature: $R=\frac{(2 a \pm k)^{2}}{(4 a \pm k)}$.

The center of curvature 13 at $\mathrm{C}, \mathrm{Fig} .144(\mathrm{a})$. Draw HQ perpendicular to HP until it meets $A B$ in Q. C is the intersection of CO and HP .
(k) Double Generstion: (See Eplcycloids.) It may also be generated by a point attached to a circle rolling internaliy (centers on the same side of the common tengent) to a fixed circle half the size of the rolling cirale.
(1) The Limacon may be generated by the following 11nikage: CDKF and CGED are two similar (proportional) crossed parallelograms with points C and F fixed to the plane. CHJD is a parallelogram and P 1a a point on the extension of JD. The action here is that produced by a circle with center D rolling upon an equal fixed circle whose centor is C. The locus of P (or any point rigidly attached to JD) is a Limacon. (See an equivalent mechanism

316. 145 under Cardio1d.)

BIBLIOGRAPHY

Edwarda, J.: Calculus, Kam111an (1892) 349.
Selmon, G.: Higher Plane Curves, Dublin (2879).
W1ele1tner, H.: Spezlelle ebene Kurven, Le1ps1g (1908) 88.

Yetes, R. C.: Tools, A Vathematical Sketch and Kodel Book, I. S. U. Press (1941) 182.

NEPHROID

HISTORY: Studied by Huygena and Tach1rmhauren about 1679 in connection with the theory of caustics. Jasques Bernoulli in 1692 showed that the Nephrold is the catacaustic of a cardiold for a lumifious cusp. Double generetion wss first discovered by Deniel Bernoulli in 1725.

1. DESCRIPTION: The Nephrold is a 2-cusped Ep1oycloid. The rolling circle may be one-half ($a=2 b$) or threehalves $(3 a=2 b)$ the madus of the fixed circle.

Fig. 146
For this double generation, let the flxed circle have center O and redius $O T=O E=a$, and the rolling circle center A^{\prime} and redius $A^{\prime} T^{\prime}=A^{\prime} F=\Omega / 2$, the latter carry1ng the tracing point F. Draw ET1, OTIP, and PTI to T. Let D be the intersection of 70 and $E P$ and draw the circle on T, P, and D. This aircle is tangent to the fixed oircio since angle DPT $=\pi / 2$. Now atnce PD is parallel to $T^{\prime} E$, triangles $O E T^{\prime}$ and OFD are fasceles and thus

Furthermore, arc TI $=280$ and arc $T^{\prime} P=A \theta=$ arc $T^{\prime \prime} X$.
Thus

$$
\mathrm{Erc} T X=3 A H=\operatorname{arc} T P
$$

Accordingly, if P vere attached to either rolling circle - the one of radius a/2 or the one of radius $30 / 2$ - the same Nephroid would be generated.
2. EQUATIONS: $(s=20)$

$$
\begin{cases}x=b(3 \cos t-\cos 3 t) \\ y=b(3 \sin t-\sin 3 t) \cdot & \left(x^{2}+y^{2}-4 a^{2}\right)^{3}=208 a^{4} y^{2} \\ s=6 b \cdot \sin \left(\frac{T}{2}\right) . & 4 R^{2}+s^{2}=36 b^{2} \\ p=4 b \cdot \sin \left(\frac{P}{2}\right) . & r^{2}=4 b^{2}+\frac{3 n^{2}}{4} .\end{cases}
$$

$$
x \cdot \cos \varphi+y \cdot \sin \varphi=4 b \cdot \sin \left(\frac{\varphi}{2}\right)
$$

3. METRICAL PRGPERPIES: $(a=2 b)$.
$L=240$.
$A=12 \pi b^{2}$.
$R=\frac{3 D}{4}$.
4. GENERAL ITEMS:
(a) It is the catecauatic of a Pardioid for a luminoue cusp.
(b) It 1 s the catecaustio of a Cirolo for a sot or parallel reys.
(a) Its evolute is another Nephroid.
(d) It is the evolute of a Cayley Sextic (a curve parallel to the Nephrold).
(e) It is the envelope of a dianeter of the ctrcie that generates a Cardiold.
(f) Tengent Construction: Since T^{\prime} (or T) $1 s$ the instantaneous center of rotation of P, the normal 13 I'P and the tangent therepone PF (or PD). (F1g. I51.)

Edwerds, J.: Celculue, Macmtlisn (1892) 343 ff . Prootor, \cdot R. A.: A Treatise on the cycloid (1878). Wieleitner, H.: Spezielle ebene Kurven, Lelpsig (1908) 139 ff.

PARALLEL CURVES

FISTORY: Lelbnita was the flret to conelder Parsilel Curves in 1692-4, prompted no doubt by the Involutes of Huygens (2673)

1. DEFINIMION: Let P be a variable point on a giver curve. The looue of Q and $Q^{\prime}, \pm k$ mits diatant from P measured along the normal, is a curve parallel to the given curve. There are two branches.

For some values of k, e Parallel curve may not be unlike the glven curve in appearance, but for other values of k 1 t may be totally dissim1lar. Notice the paths of a pair of wheels with the exle perpendicular to their planes.
2. GENERAL ITEMS
(a) Since Parallel Curves have common normale, they heve a conmon Evolute.
(b) The tangent to the given curve at P is parallel to the tangent at Q. A Parallel Curve then is the envelope of 11nes:

```
ax}+by+c=\pmk\cdot\sqrt{}{\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}}
```

diatant $+k$ unlta from the tangent: $a x+b y+c=0$ to the given ourve.
(c) A Perallel Curve is the envelope of circles of radius k whose centers lie on the given eurve. this affords a rather effective means of sketching various persilel ourves.

curve are paraliel to each
other (F1g. 148).

3IG. 148
(e) The difference in lengths of two brancheg of a Parsilel Curve $1 \mathrm{~s} 4 \pi \mathrm{k}$.
3. SOMB EXAMPLFS: Illustrations selected from familiar curves follow.
(a) Curves parallel to the Parapols are of the 6th degree; those parallel to the Central Conios are of the 8th degree. (See Salmon's Conica).
(b) The Astroid $x^{\frac{7}{3}}+y^{\frac{9}{3}}=s^{\frac{3}{3}}$ has parallel curves: $\left[3\left(x^{2}+y^{2}-a^{2}\right)-4 k^{2}\right)^{3}+\left(27 e x y-9 k\left(x^{2}+y^{2}\right)-18 a^{2} k+8 k^{3}\right]^{2}=0$.

7ig. 249
4. A LINKAGE FOR CURVES PARATJET TO THE ELLIPSE:

116. 150

A straight Ine mechanfsm is built from two proportionsl crossed parallelograms 00^{\prime} EDO and $00^{\prime} F A O$. The rhombus on $O A$ and $O H 1 s$ completed to 3 . Since 00^{\prime} (here the plame on which the motion takes place) always bisacts angle $A O H$, the point B travels along the ine 00'. (See Tools, p. 96.) Any point P then describes an Ellipse with semi-sxes equel in length to $C A+A P$ and PS.

Since A moves on a circle with center 0 , and B moves along the line 00^{1}, the instantaneaus center of rotation of P is the intersection O of $O A$ produced and the perpendioular to 00^{\prime} at B. This point C then lies on a cipcle with center 0 and radius twice OA.

The "klte" CAPG is completed with $A P=P G$ and $C A=C G$. Two additional crossed parallelogrenns APMJA and PMNRP are attached In order to have PM bisect angle APG and to insure that PM be slweys directed towerd C Thus PM is nommal to the path of P and any point such as Q describes a curve parallel to the rlilpse.

Dienger: Arch der Math. IX (1847).
Loria, G.: Spezielle Alpeorel sche und Transzendente ebene Kurven, Le1psig (1902).
Selmon, G.: Conic Sections, Longmans, Green (1879) 337; Par. 372, Ex. 2 .
Weleitner, H.: Spezielle ebene Kurven, Leipsig (1908). Yatea, R. C.: American Mathemetioal Monthiy (1938) 607.

PEDAL CURVES

HISTORY: The 1dea of positive and negative pedal curves occurred f1rst to Colin Maclaurin in 1718; the name 'Pedall is due to Terquem. The theory of Caustio Curves inciudes Fedals in an important role: the or thotomic is an enlargement of the pedel of the reflecting curve with respect to the point source of Ilght (quetelet, 1822). (See Caustics.) The notion mey be enlanged upon to include loot formed by dropping perpendiculars upon a Ine making a constant angle with the tangent - viz., pedals formed upon the normals to a curve.

1. DESCRIPTION: The locus C1, F1g. 151(a), of the foot of the perpendicular from a fixed point I (the Pedsi Point) upon the tangent to a given curve C is the First Positive Pedal of 0 with respect to the fixed point. The given curve 0 is the First Negative pedal of C_{2}.

(a)

F1g. 151
(b)

It is shom elsewhere (see Pedel Bquations, 5) thet the angle between the tangent to a given curve and the radius vector r from the pedal point, Fig. 151 (b), equals the corresponding angle for the Fedal Curve. Thus the tangent to the Fedsi is also tangent to the oircle on I as a diameter. Accordingly, the envelope of these ofroles is the first positive pedal.

Conversely, the firat negative Fedal is then the envelope of the line through a variable point of the ourve perpendicular to the radius vector from the Fedal point.
2. FEOTANGULAR EQUATIONS: If the given curve be $f(x, y)=0$, the equation of the Fedal with respect to the origin is the result of eliminating m between the 11ne:

$$
y=m x+k
$$

and its perpendiculer from the origin: $m y+x=0$, where k is determined so that the line is tangent to the curve. For example:

The Pedal of the Parabola $y^{2}=2 x$ with respect to 1 ts vertex $(0,0)$ is

$$
\left[\begin{array}{l}
y=m x+\frac{1}{2 m} \\
m y+x=0
\end{array} \quad \text { or } \quad y^{2}=-\frac{2 x^{3}}{2 x+1}, \quad\right. \text { a C1aso1d. }
$$

3. POLAR EQUATIOMS: If ($\mathrm{r}_{0}, \theta_{0}$) are the coordinates of the foot of the perpendicular from
the pole:
$\tan \psi=r\left(\frac{d \theta}{d r}\right), r_{0}=r \cdot a \sin \psi$
and $\quad \varphi+\left(\theta-\theta_{0}\right)=\frac{\pi}{2}$.
Thus $\frac{r^{2}}{r_{0}^{2}}=1+\left(\frac{1}{r^{2}}\right)\left(\frac{d r}{d \theta}\right)^{2}$.
Among these relations, r, θ and ψ

Fig. 152
may be eliminated to give the
polar equation of the pedal cusve with respect to the origin.

For example, consider the Sinusoidal Spirals $r^{n}=a^{n} \cos n \theta \cdot *$ Differentiating: $n\left(\frac{r^{\prime}}{r}\right)=-n \cdot \operatorname{ten} n \theta$
$=n \cdot \cot \psi$; thus $\varphi=\frac{\pi}{2}+n \theta$.
*Rootiflable when $\frac{1}{n}$ is an intoger.

But $\theta=\theta_{0}+\frac{\pi}{2}-\theta_{0}-n \theta$ and thus $\theta=\frac{\theta_{0}}{(n+1)}$
Now $r_{0}=r \cdot \sin \varphi=r \cdot \cos n \theta=a \cdot \cos ^{\frac{1}{2}} n \theta \cdot \cos n \theta$,
or $\quad r_{0}=a \cdot \cos ^{(n+1) / n} n \theta=s \cdot \cos ^{(n+1) / 4}\left[\frac{n \theta_{0}}{(n+1)}\right]$.
Thus, dropping subacripts, the first pedal with respect to the pole 18:

$$
r^{n_{1}}=a^{n_{1}} \cos n_{1} \theta \quad \text { where } \quad n_{1}=\frac{n}{(n+1)} \text {, }
$$

another Sinuso1gal Spirel. The 1teration 1 s clear. The kth positive pedsl is thus

$$
r^{n_{k}}=a^{n_{k}} \cos n_{k} \theta \quad \text { where } n_{k}=\frac{n}{(m+1)}
$$

Many of the results given in the table that follows cen be read directly from this last equation. (See also Splrals 3, Pedal Bquations 6.)
4. PEDAL EQUAGIONS OF PEDALS: Let the glven curve be $r=f(p)$ and let p_{2} denote the perperdiculer from the origin upon the tangent to the pedsi. Then (See Pedal Equations):

$$
p^{2}=r \cdot p_{1}=f(p) \cdot p_{1}
$$

Thus, replacing p and p_{1} by the 10 respective analogs r and p, the pedal equation of the pocal 1s:

$=f(r) \cdot p$.

R18. 153

Thus consider the circle $r^{2}=8 p$. Here $f\left(p^{\prime}\right)=\sqrt{a p}$ and $f(r)=\sqrt{(a r)}$. Hence, the pedal equation of 1 ts Pecsal with respect to a point on the circle is

$$
r^{2}=\sqrt{(a r)} \cdot p \quad \text { or } \quad r^{3}=8 p^{2}
$$

a Cercio1d. (See Pedel Equations, 6.)
Equations of successive pedals are fommed in simflan fashion.
5. SONE CURVBS AND THEIR PEDALS:

Given Curve	Podal Point	Piret Poaltive Pedal
Cirolo	Any Point	Ifmacon
Ofrole	Point on Cirole	Carinoid
Perabola	Yertex	Cibeola
Parabola	Focue	$\left.\begin{array}{c}\text { Tengent at } \\ \text { Vertex }\end{array}\right]$ See
Central Canic	Focue	AuxiliaryCiroleConice, 16.
Contral Conio	Center	$\mathrm{r}^{2}=A+B \cdot \cos \theta$
Rectangular Hyperbole	Center	Lemniagate
Bquianguiar Spiral	Pole	Iquisneular Spiral
$\operatorname{Cendiosa}\left(p^{2} \mathrm{a}-r^{3}\right)$	Pole (Cuap)	Geyloy's Sextic $\left(r^{4}-a \varphi^{3}\right)$
Lamiecate $\left(p a^{2}=r^{3}\right)$	Pole	$r^{5}=a p^{3}$
Catacaugtic of a Parsbole for rede perpundicular to 1 te exte $r \cdot 00 \theta^{3}\left(\frac{\theta}{3}\right)=a$	Pole	Parabole
Strusoidal Spiral $\left(x^{n+1}=e^{n} p\right)$	Polo	Sinueoidal Spiral
Aatro1d: $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$	Centar	
Parabola	Foot of Direotrix	Right Strophoid
Parabola	Arb. Point of Directrix	Strophold
Parabola	$\begin{aligned} & \text { Refleation of } \\ & \text { ¥ocue in Direc- } \\ & \text { trix } \end{aligned}$	Trisectrix of Maclaurin
C18sold	Ondinary Focue	Carilo1d
EpI- and Irpocycloids	Center	Rosee

(Iable Continued)

Givon Curve	Pedal Point	Prat Pogitive Pedral
Deltold *	Gump	Simple Toliun
Deltold.	Vertex	Double Folium
Deltold	Center	Prifolium
Involute of a Circle	Center of Circle	Archimedian Spiral
$x^{3}+y^{3}=a^{3}$	Or18in	$\left(x^{2}+y^{2}\right)^{\frac{3}{2}}=a^{\frac{3}{2}}\left(x^{\frac{3}{2}}+y^{\frac{3}{2}}\right)$
$\left.x^{3 / 2}\right)^{n}=a^{m+n}$	Or1gin	$\begin{aligned} & r^{n+1}= \\ & s^{m+n} \cdot \frac{(m+n)^{n+n}}{m^{m} n^{n}} \cdot 00 \theta^{m} \theta e 1 n^{n} \theta \end{aligned}$
$\left\{\begin{array}{l} \left(\frac{x}{a}\right)^{n}+\left(\frac{y^{n}}{b}\right)^{n}=1 \\ (\text { Lemé Curve }) \end{array}\right.$	Origitil	$\begin{gathered} (a x)^{n /(n-2)}+(b y)^{n /(n-1)}= \\ \left(x^{2}+y^{2}\right)^{n /(n-2)} \end{gathered}$

(which for $n=218$ an E111pee; for $n=1 / 2$ a Parabola).
*Its pedel with regpeot to $(b, 0)$ has the equatton:

$$
\left[(x-b)^{2}+y^{2}\right] \cdot\left[y^{2}+x(x-b)\right]=4 a(x-b) y^{2},
$$

where $x^{2}+y^{2}=9 a^{2}$ is the exrcumelrele of the Deltold.
6. MISCRLLANEOUS ITEUS:
(a) The 4 th negative pedsl of the cardiold with respect to 1 ts cusp 1 s a Parabola.
(b) The 4 th pooltive pedal of $r^{\frac{2}{6}} \cos \left(\frac{2}{9}\right) \theta=a^{\frac{8}{5}}$ With respect to the pole is a Rectanguler Hyperbola.
(c) $R^{\prime}\left(2 r^{2}-p R\right)=r^{3}$ where R, R^{\prime} are radit of curvature of a curve and 1ts Fedal at corresponding points.

BIBLIOGRAPHY

Zdwards, J.: Calculus, Macmsllan (1892) 163 ff. Encyclopaedie Britannice: 14 th Ba., under "Curves, Special."
Hiltor, H .: Plane Alg. Curves, Oxford (1932) 166 If . Salmon, G.: H1gher Plane Cumves, Dublin (1879) 99 ff . Wieleitner, H. : Spez1elle ebene Kurven, Le1pe1g (1908) 101 etc.
W1lliamson, B.: Caloulus, Longmans, Green (1895) 224 ff .

PEDALEQUATIONS

1. DEPINITION: Certein curves heve aimple equations when expressed in terms of a radius vector P from a selected fixed point and the perpendicular distance p upon the variable tangent to the curve. Such relations are csiled PedsI Equetions.
2. FROM RECTANGULAR TO PEDAL EQUATION; If the given curve be in rectangular coordinatea, the pedal equation may be ostablished

T18. 154 emong the equations of the curve, 1 ta tangent, and the perpendioular from the selected point. That is, with

$$
\left\{\begin{array}{l}
f\left(x_{0}, y_{0}\right)=0 \\
\left(f_{y}\right)_{0}\left(y-y_{0}\right)+\left(f_{x}\right)_{0}\left(x-x_{0}\right)=0, \\
p^{2}=\frac{\left[x_{0}\left(f_{x}\right)_{0}+y_{0}\left(f_{y}\right)_{0}\right]^{2}}{\left[\left(f_{x}\right)_{0}^{2}+\left(f_{y}\right)_{0}^{2}\right]},
\end{array}\right.
$$

where the pedsl point is taken as the origin.
3. FROM POLAR TO PEDAJ EQUATION:

Among the relations: $r=f(\theta), p=r \cdot \sin p$,
$\tan \psi=\frac{r}{r^{1}}$, where the selected point is the origin of coordinates, θ and ψ may be eliminated to produce the pedal equation. (For example, see 6.)
4. CURVATURE TN PRDAT COORDINAIES: The exprossion for radius of curvatuce 1 s strikingly simple:

F1g. 155
Since $d e^{2}=d r^{2}+r^{2} d \theta^{2}$ and $\tan \psi=\frac{r}{r^{1}}=r\left(\frac{d \theta}{d r}\right)$,
$t=r\left(\frac{d r}{d s}\right)=p \cdot\left(\frac{d r}{d \theta}\right) / s \quad$ and thus $\quad \mathrm{d} \theta / \mathrm{ds}=\mathrm{d} / \mathrm{r}^{2}$
Nov $p=r \cdot \sin \psi$ and $d p=\{\sin \psi) d r+r(\cos \varphi) d \psi$,
or $\frac{d p}{d s}=\left(\frac{p}{r}\right)\left(\frac{d r}{d s}\right)+t\left(\frac{d \psi}{d s}\right)$.
Thus $\frac{d \psi}{d s}=\left(\frac{1}{r}\right)\left(\frac{d p}{d r}\right)-\frac{p}{r^{2}}$.
Accordingly, $K=\frac{d a}{d s}=\frac{d \psi}{d s}+\frac{d \theta}{d s}=\left(\frac{l}{r}\right)\left(\frac{d p}{d r}\right)$ or

$$
R=r\left(\frac{d r}{d p}\right)
$$

5. PEDAL EQUATIONS OF PEDAL CORVES: Let the pedal equetion of a given ourve be $r=f(p)$. If p_{1} be the perpendicular upon the tengent to the fisret positive pedal of the given curve, then, since p makes an angle of
a $-\frac{\pi}{2}$ with the axis of coordinates,

$$
\tan \theta=p\left(\frac{d \alpha}{d p}\right) \quad(\text { see } \operatorname{Fig}, 155)
$$

NOW $\tan \varphi\left(\frac{d p}{d s}\right)=r \cdot s 1 n \cdot \psi \cdot\left(\frac{1}{p}\right)\left(\frac{d p}{d r}\right)$
and thus $\tan \psi=\sin \psi \cdot\left(\frac{d s}{d s}\right)=\tan \psi$.
Acoordingly, $\psi=\psi$ and $p^{2}=r \cdot p_{1}$.
In this last relation, p and p_{1} play the same poles as do r and p respectively for the given curve. Thus the pedal equation of the first positive pedal of $r=f(p)$ is

Equations of successive Pedal curves are obtained in the same fashion.
6. EXAMPLES: The Stnusoldal Spirals ane $n^{n}=a^{n} \sin n \theta$ Here,

$$
\frac{r}{r^{\prime}}=\tan n \theta=\tan \psi .
$$

Thus $\psi=$ no , a relation giving the construction of tangents to various curves of the famlly.

$$
p=r \cdot \sin \psi=r \cdot \sin n \theta=\frac{r^{n+1}}{e^{n}},
$$

or $B^{n} \cdot p=r^{n+1}$, the pedal equation of the glven curve. Special members of this family are included in the following table:

n	$r^{n}=a^{n} \theta \ln n \theta$	Curve	Paçal Equation	$\mathrm{R}=\frac{\mathrm{a}^{\mathrm{n}}}{(\mathrm{n}+1) 2^{n-1}}=\frac{r^{2}}{(\mathrm{n}+1) p}$
-2	$r^{2} \ln 2 \theta+a^{2}=0$	Hect. Hyperbola	$x p=a^{2}$	$-r^{3} / a^{2}$
-1	$x \cdot \sin \theta+a=0$	İne	$\mathrm{p}=a$	∞
$-1 / 2$	$r=\frac{2 a}{1-000 \theta}$	Parabola	$p^{2}=a r$	$2 \sqrt{r^{3} / a}$
+1/2	$r=\left(\frac{8}{2}\right)(1-000 \quad \theta)$	Cardiold	$p^{2} \mathrm{a}=r^{8}$	$\left(\frac{2}{3}\right) \sqrt{\mathrm{ar}}$
+1.	$r=\mathrm{a}^{*} \mathrm{e} \operatorname{tn} \theta$	Circle	$\mathrm{pa}=\mathrm{r}^{2}$	$\frac{\mathrm{a}}{2}$
+2	$\mathrm{r}^{2}=a^{2} \sin 20$	Leminacate	$\mathrm{pa}^{2}=\mathrm{r}^{3}$	$\frac{a^{2}}{3 r}$

(See also Splrals, 3 and Pedal Curves, 3.)

Other curves and corresponding pedal equations are given:

CURVE	$\begin{aligned} & \text { PFWDAL } \\ & \text { POITI } \end{aligned}$	PEDAL EQUATION
Parabola ($L R=4 e$)	Vertex	$a^{2}\left(r^{2}-p^{2}\right)^{2}=p^{2}\left(r^{2}+4 a^{2}\right)\left(p^{2}+4 a^{3}\right)$
E111pgo	Focus	$\frac{b^{2}}{p^{2}}=\frac{2 a}{r}-1$
E111pee	Center	$\frac{a^{2} b^{2}}{p^{2}}-r^{2}=a^{2}+b^{2}$
Hyperbola	Focue	$\frac{b^{2}}{p^{2}}=\frac{2 s}{r}+1$
Hyperbola	Center	$\frac{a^{2} b^{2}}{b^{2}}-r^{2}=a^{2}-b^{2}$
Ep1- and Hypocycloide	Center	$\mathrm{p}^{2}=A \mathrm{r}^{2}+\mathrm{B}^{* *}$
Aatrold	Center	$r^{2}+3 x^{2}=a^{2}$
Equiangular (α) Splral	Pole	$p=r \cdot \operatorname{in} \alpha$
Deltoid	Center	$8 \mathrm{p}^{2}+9 \mathrm{r}^{2}=\mathrm{a}^{2}$
dotes' Spirals	Pole	$\frac{1}{D^{2}}=\frac{A}{r^{2}}+B$
$r^{m}=a^{m} \theta^{*}\left(\begin{array}{c} (\text { Sacch } 1 \\ 1854) \end{array}\right.$	Pole	$p^{2}\left(m^{2} \cdot r^{2 m}+a^{2 m}\right)=m^{2} \cdot r^{2 m+2}$

$$
\begin{aligned}
* \mathrm{~m} & =1: \text { Arohimedean Spiral; } & & \mathrm{m}=2: \text { Fermat' } \mathrm{B} \text { Spiral; } \\
\mathrm{m} & =-1: \text { Hyperbolic Ipiral; } & & \mathrm{m}=-2: \text { L1tuue. }
\end{aligned}
$$

** $A=\frac{(a+2 b)^{2}}{4 b(a+b)}, B=-a^{2} A$.

BIBLIOGRAPHY

Edwards, J.: Calculus, Macmillan (1892) 161.
Encyclopaedia Br!tannica, 14 th Bd ., under "Curves, Special."
Wiele土tner, H.: Spezielle ebene Kurven (1908) under "Fusspunkts kurven."
W1111amson, B.: Caloulus, Longmans, Green (1895) 227 ff .

PURSUIT CURVE

HIECORY: Credited by some to Leonardo da Vinc1, it kas pobably first concelved and solved by Bouguer in 1732 .

1. DESCRTPTION: One particle travele along a specified curve while another pursues 1 t, its motion being alweys ai-

Fig. 156 reoted toward the first perticle with related velocities.

If the pursuing particle is assighed coordinates (x, y) and there is a function g relating the two velocities $\frac{d s}{d t}, \frac{d \sigma}{d t}$, then the triree conditions

$$
f(\xi, \eta)=0 ; \frac{(\eta-y)}{(\xi-x)}=y^{\prime} ;
$$

$$
g\left(\frac{d s}{d t}, \frac{d \sigma}{d t}\right)=0
$$

among whiton ξ, η (coordinates of the pursued particle) may be elimineted, are sufficient to produce the differential equation of the curve of pursuit.
2. SPECIAL CASF: Let the particle pursued travel from rest at the x-axis along the line $x=a, F 1 g .156$. The pursuer sterts at the same time from the origin with velocity k times the former. Then

$$
\begin{array}{cc}
\xi=a, \frac{(\eta-y)}{(a-x)}=y^{\prime} & \text { or } \quad \eta=y+(a-x) y^{1} \\
d s=k \cdot d y & \text { or } \quad \mathrm{dx}^{2}+d y^{2}=k^{2} \cdot d \eta^{2}
\end{array}
$$

There follows: $d x^{2}+d y^{2}=k^{2} \cdot\left[d y-y^{\prime} d x+(s-x) d y^{\prime}\right]^{2}$

$$
=k^{2}(s-x)^{2}\left(d y^{\prime}\right)^{2}
$$

or

$$
\left.1+y^{12}=k^{2}(a-x)^{2} y^{12}\right\}
$$

(s differential equation solvable by flrst setting $\mathrm{F}^{1}=\mathrm{p}$). Its solutions are
$2 y=\frac{k a^{2 / k}(a-x)^{(k-1) / k}}{1-k}+\frac{k a^{-1 / k}(a-z)^{(k+1) / k}}{1+k}-\frac{2 k a}{1-k^{2}}$, if $k+2$;
$\pm 4 a y=(a-x)^{2}-2 a^{2} \ln \frac{a-x}{a}-a^{2}, 10 k=1$.
The special case when $k=2$ is the cuble with a loop:

$$
a(3 y-2 a)^{2}=(a-x)(x+2 a)^{2}
$$

3. GENERAL ITEMS:
(a) A much more difficult problem than the special case given above is that where the pursued particle travels on a circle. It seems not to have been solved unts1 1921 (F. V. Norley and A. S. Hathaway).
(b) There is an interesting oasc in whioh three dogs at the vertices of a triangle begin simultanecusly to chase one another ulth equal velocities. The path of each dog is an Equiangular Spirel. (z. Lucas and H. Brocard, 1877).
(c) Since the velocities of the two particles are given, the curves defined by the differential equation in (2) are sil rectifiable. It is an interesting exercise to establl an this from the differentisl equation.

BIBLIOGRAPHY

American Mathemsticel Monthly, v 28, (1921) 54, 91, 278. Cohen, A.: Differentia? Equationg, D. C. Heath (1933) 173.

Bncyclopaedia Britannics, 14th Ed., under "Ourves, Speclal.
Johns Hopkins Univ. Circ., (2908) 135.
Luterbacher, J.: Dissertation, Bern (1900).
Mstheratical Gazette (2930-1) 436.
Nouv. Conpesp. Meth. v 3 (2877) 175, 280.

RADIAL CURVES

HISTORY: The ides of Redfal Curves apparently occurred f1rst to Tucker in 1864.

1. DEFINIMION: Lines are dram from a selected point 0 equal and parallel to the radil of curvature of a given curve. The locus of the end points of these ines is the Redial of the given curve.
2. IILUSTRATIONS:
(a) The radivs of eurvature of the Oycloid ($\mathrm{F} \pm \mathrm{B}$. 157(e) (ses Cyclo1d) is (R hes inclination $\pi-\frac{t}{2}=\theta$):

$$
R=2(P H)=4 a \cdot \sin \left(\frac{t}{2}\right)
$$

Thus, if the fixed point be taken at a cusp, the radial curve in polar coordinetes 1s:
a cirele of rgdius 2 a .

(a)

F16. 15 ?
(b)
(b) The Equiangular Spiral $s=a\left(e^{m p}-1\right) \mathrm{Pig} \cdot 157(\mathrm{~b})$ has $R=m \cdot a \cdot E^{I T}$. Thus, if θ be the inclinetion of the radius of curvature, $\theta=\frac{\pi}{2}+\varphi$, and

```
r=m\cdote\cdote}\mp@subsup{e}{}{m(0-\pi/2)
```

is the polar equation of the Radial: another Equiangular Spirel.
3. RADIAL CURVBS OF THR CONICS:

$= \pm x \cdot\left(x^{2}+y^{2}\right)$

71g. 158

$$
\begin{gathered}
\left(a^{2} x^{2}+b^{2} y^{2}\right)^{3}=a^{4} b^{3}\left(x^{2}+y^{2}\right)^{2} \\
\text { [Ellpse: } b^{2}>0 ; \\
\text { Hyperbola: } \left.b^{2}<0\right] .
\end{gathered}
$$

4. GENERAL ITENS
(a) The degree of the Radial of an algebraic curve is the same ss that of the curve's Bvolute.

Curve	Radial
Ordinary Catenary	Kampyle of Iudoxus
Catenary of Un.Str.	Straight Line
TrBctrix	Kaypa Curve
Cyoloid	Clrcle
Epicyclo1d	Roses
Deltoid	Trifolium
Astrold	Quadrifolium

BIBLIOGRAPHY

Encyclopaedia Britannice: 14th Ed., "Curves, Special." Tucker: Pros. Ior. Math. Soc., 1, (1865).
WLeleitner, H. : Spezielle ebene Kurven, Letpsig (1908) 362.

ROULETTES

HISMORY: Besant in 2869 seems to have been the first to give any sort of systematic discussion of Roulettes althoush previously, Difer (1525), D. Bernoulli, la kire, Desargues, Le1bnitz, Newton, Neaxvoll and others had made contributions in one form or another, particularly on the Cycloidel Curves.

1. GBNERAL DISCUSsion: A Roulette is the path of a point - or the envelope of a line - atceched to the plane of a curve which rolia upon a flxed curve (with obvious continuity conditions).

FIg. 159

Consider the Rouletta of the point o attached to a curve which rolla upon a fixed curve referred to 1 ts tangent and normal at O_{1} as axes. Let O be originally at O_{2} and let $T:\left(x_{1}, y_{1}\right)$ be the point of contact. Also let (u, v) be coordinates of I referred to the tangent and normal at 0 ; φ and i $_{1}$ be the angles of the nommals as Indioated.
Then

$$
\left\{\begin{array}{l}
x=v \cdot \sin \left(\varphi+\varphi_{2}\right)-u \cdot \cos \left(\varphi+\varphi_{1}\right)-x_{1} \\
y=-v \cdot \cos \left(\varphi+\varphi_{1}\right)-\dot{u} \cdot \sin \left(\varphi+\varphi_{1}\right)+Y_{1},
\end{array}\right.
$$

where all the quantities appearing in the ripht member may be expreesed in terms of or, the arc length s. These then are parametric equations of the locus of 0 . It is not difficult to generalize for any carmied point.

Familiar examples of Foulettes of a point are the Cycloids, the Trochoids, and Involutes.
2. ROUTETTRS UPON A LTNE:
(a) Poier Bquation: Consider the Roulette genersted by the point Q attached to the curve $r=r(\theta)$, reforred to Q as pole ($W 1$ th $Q O_{1}$ es initiel line), 8 a 1 t rolls upon the $x-a \times 1 s$. Let P be the point of tangency and the point O_{1} of the curve be originally at 0 . The instantaneous center of rotation of Q is P and thus for the locus of Q :

$$
\begin{aligned}
& \frac{d y}{d x}=\cot \psi \\
& \text { But } \tan \psi=r\left(\frac{d \theta}{d r}\right) \text { and } \\
& y=r \cdot \sin \psi=r\left(\frac{d x}{d s}\right) .
\end{aligned}
$$

FIg. 160 Thus, among the relstions: $r=f(\theta), \frac{d x}{d y}=r\left(\frac{d \theta}{d r}\right), y=r\left(\frac{d x}{d s}\right)$ the quantities r, θ may be eliminated to obtain the rectangular equation of the path of Q.

For example, consider, F1g. 161, the zocus of the focus of the Parabola rolling upon a line: originally the tangent at its vertex:

$$
r=\frac{2 a}{1-\sin \theta}, \frac{d x}{d y}=\frac{1-\sin \theta}{\cos \theta}, \quad y=r \cdot \frac{d x}{d s}
$$

71g. 161
From these, r and θ are ellminated to give

$$
a \cdot d e=y d x \text { or } a \cdot b=\int_{0}^{x} y d x=A
$$

a definftive property of the Cetemary (See Catenary, 3).
(b) Pedsl Equation: If the rolling curve is in the form $p=f(r)$ (w th respect to Q), then $p=Q N=y$
$=r\left(\frac{\partial x}{d s}\right)$ and the reotengular equation of the rouletite is given by:

$$
y=f\left(y, \frac{d s}{d x}\right)
$$

For example, consider the Roulette of the pedsl point (here the center of the flxed circle) of the Cyclo1del family:
\qquad where $A=a+2 b$, and
$B=4 b(a+b), B E$ the curve rolls upon the x-axis (originally a cusp tengent).

The Roulette is given by

$$
B y^{2}=A^{2}\left[y^{2}\left(\frac{d e}{d x}\right)^{2}-a^{2}\right]=A^{2} y^{2}\left(1+y^{\prime 2}\right)-a^{2} A^{2}
$$

From this

$$
\frac{2 \operatorname{sadx}}{A}=\frac{2 y d y}{\sqrt{A^{2}-y^{2}}}
$$

and

$$
\frac{a x}{A}=-\sqrt{A^{2}-y^{2}}
$$

the constant of integration being discarded by choosing the fixed tangent. Thus the Roulette is

$$
A^{2} y^{2}+a^{2} x^{2}=A^{4},
$$

an Bliipso. As a particular case, Fig. 162, the Cardiold has $a=b$, and the Roulette of Its pedal point 18

$$
x^{2}+9 y^{2}=81 a^{2}
$$

718. 162

The Cardiold rolla on "top" of the line until the cusp touches, then upon the "bottom" in the reverse direction.
(c) Blegant theorems due to Steiner connect the areas and lengths of Roulettes and Pedsi Curves:
I. Let a point rigidly attached to a closed curve rolling upon a line generate a Roulette through one revolution of the curve. The area betwoon Foulottie and 11ne is double the area of the Pedsl of the roling curve with respect to the generating point. For example

The area under one arch of the ordinary Cyolold generated by a circle of radius a 1 a $3 \pi a^{2}$; the area of the Cardiold formed as the Pedal of this circle with respect to a point on the circle is $\frac{3 \pi e^{2}}{2}$.

The Pedal of an Ellipse with respect to a focus is the circle on the mafor axis (2a) as diameter. Thus the area under the Roulctte (an Elliptia Catenary. See B) of \& foous as the Bllipse rolls upon a line is $2 \pi \varepsilon^{2}$.
II. If any curve roll upon a line, the ard length of the Roulette described by E point 13 equal to the corresponding arc length of the Pedel wt th respect to the generating point. For example

The length, 8a, of one arch of the ordinary Cycloid is the same as that of the Cardioid.

The length of one arch of the Elliptio Catenary is $2 \pi a$, the ofroumference of the circle on the major sxis of the BIIIpse.
3. TRE LOCUS OF THE CENIER OF CURVATURE OF A CURVE, MEASURED AT THE POLNT OF CONLACT, AS THE OURVE ROLLS UPON A LINE:

Let the rolling curve be given by 1 ts Whevell

F1g. 163

Intrinsic equation: $s=f(\varphi)$. Then, if x, y are coordinates of the center of curvature,

$$
\pi=s=r(\varphi), y=R=I^{\prime}(\varphi)
$$

are parametric equations of the locus. For example, for the Cycloidel family,

$$
s=A \cdot \ln B \varphi
$$

$\pi=A \cdot \sin B \varphi, \quad y=A B \cdot \cos B \varphi$ and the locus is
4. THE ENVELOPE OF A LINE CARRIED BY A CURVE ROLITNG UPON A FIXED LINE:

IL.g. 164

Drew $P Q$ perpendicular to the carrled ilne. Then Q 1a the point of tangency of the car ried Inne with 1 ts envelope. Por, Q hes, at the instent plotured, the direction of the carrisd line and every point of that line has center of rotetion at P. The envelope 1 s thut the locus of points Q.

Let the curve roll to s neighboring point P_{2} carry-
1ng Q to Q_{1} through the angle $d q_{\text {. Then }}$ If o represents the arc length of the envelope,

$$
d \sigma=Q T+T Q_{1}=\sin \varphi \cdot d s+z \cdot d \varphi,
$$

or

$$
\frac{d \varphi}{d \varphi}=\sin \varphi\left(\frac{d s}{d \varphi}\right)+z
$$

a relation connecting radil of curvature of rolling curve and envelope. Intrinsio equations of the envelope are frequently easily obtained. For example, consider the envelope of a diameter of a circle of padius a. Here
and
$z=$ a.ain φ

Thu: $\frac{d g}{d \varphi}=a$. $\frac{d \sigma}{d \phi}=2 a \cdot \sin \varphi$ and
$\sigma=-2 \mathrm{e} \cdot \cos \varphi$, $8 n$
intrinsie equation of an ordinary cyciold.

P16. 265
5. THE BNVELOPE OF A LINE CARAIED BY A GURVE ROLLING UPON A FIXRD CURVE:

If one curve rolls upon
another, the envelope of a carried ine is given by

$$
\frac{d \sigma}{d \varphi}=z+(\cos \alpha) \cdot \frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)},
$$

where the nomsle to line and curves meet at the angle α, and the R^{\prime} a are redil of curvature of the curves at their point of contact.

Fig. 166
6. A CURVE ROILING UPON AN EQUAL CURVE:

As one ourve rolls upon an equal fixed curve with corresponding points in contact, the whole configuration is a reflection in the common tangent (Maclaurin 1720). Thus the Koulette of any carried point 0 1s a curve similan to the pedsi W1 th respect to O_{1} (the reflection of 0) with couble 1ts Ifnear dimensions. A simple illustration is the Cardioid. (See Causties.)

Fig. 167
7. SONE ROULETITS:

Folising Curve	Fixed Curve	Cumeried Sleunoth	Roulatite
Circle	Lituo	Point of cirole	Cyolote
Perabola	Line	Focue	Catonary (ordsnary)*
Ex.lipgo	Iinne	Foous	Bl11ptic Gatenexy*
Hyperbola	Litre	Pocus	Hyperbe If Catenasry*
Regiprocel. Spiral.	Lina	Pols	Tractrix
Involute of cirale	Lue	Conter of circlo	Parabola
Cycloidal Iamtivy	Tine	Center	E11:poe
Line	Ary Curve	Point of IAno	Involute of the Curve
Any Cure	Iqual Curze	Ang Point	Gurve oimilar to Pedal

SOME ROULETTES (Continued):

Rolling Curve	FHxed Cuve	Carrled Rlament	Roulotto
Parabola	Equal Parebola	Vertex	Ordinary Cieeold
Oircle	Cirolo	Any Point	Cyolordal 7 amily
Parabola	Mne	Direotrix	Catenary
Cirolo	Oirelo	Any Itine	Involute of spioycloid
Catenary	IAno	Ary Line	Involute of a Pexabola

*The eurfacee of revolution of theee curvee all have ocnstent msen curvature. They appeer in mininal problems (ocay filma).
8. The mechanical arrangement of four bars show has an action equivalent to Roulettes. The bars, taken equal in pairs, form a crossed parallelogram. If a smaller side AB be fixed to the plane, Fig. $168(a)$, the longer bara intersect on an Ellipse with A and 3 as foci. The points C and D are foci of an equal Ellipse tangent to the fixed one at P, and the action is that of rolling Ellipses. (The crossed parallelogram 1s used as a "quick return" mechanism in machinery.)

(a)

(b)

On the other hana, if a lons bar $B C$ be fixed to the plane, F1g. $168(\mathrm{~b})$, the ghort bers (extended) meet on an Hrperbols with B end C es foel. Upon this Hyperbola rolla an equel one with foci A and D, their point of contect at P.

If F (the Intersection of the long bers) be moved slong a line and toothed wheels pleced on the bere BC and $A D$ as shown, F1g. $169(\mathrm{a})$, the Roulette of C (or D)

is an Blyiptic Catenary, a plane section of the Unduloid whose mean curvature is constant. The wheels require the motion of C and D to be Et right angles to the bers in order that P be the center of rotation of any point of GD. The action is that of an Eilipse rolling upon the line.

If the Intersection of the shorter bars extended, Fiz. 169 (b), with wheels attached, nove along the line, the Roulette of D (or A) is the Fyperbolic Catenary. Here A and D are foci of the Hyperbola whioh touches the line at P.

Aoust; Courbea Planes, Paris (1873) 200.
Besant, W. H.: Roulettes and glissettes, London (1870). Cohn-Vossen: Anschauliche Geometrie, Berlin (1932) 225. Encyclopsedia Britannica: "Curves, Special", 14 th Ed.
Maxwell, J. C.: Scientific Papers, v 1 (1849).
Morltz, R. E.; U. of Wesh. Pub1. (1923).
Msylor, C.: Curves Formed by the Action of … Geometric Chucks, London (1874).
Wieleitner, H.: Spezielle ebene Kurven, Leipa1g (1908) 169 ff.
Williamson, B.: Integral Calculue, Longmans, Green (1895) 203 ff., 238.
Yates, R. C.: Tools, A Mathematical Sketch and Model Book, L. S. U. Press (1941).

SEMI-CUBIC PARABOLA

HISIORY: Ay ${ }^{2}=x^{3}$ WBS the P1rst algebraic curve rectified (Ne11 1659). Leibnitiz in 1687 proposed the problem of finding the curve down which a particle may descend under the force of gravity, falling equal vertical distances In equel time intervals with initial velocity different from zero. Huygens announced the solution as a Semi-Cubic Parabole with a vertical eusp tangent.

DESCRIPIION: The curve is defined by the equetion:

$$
y^{2}=A x^{3}+B x^{2}+C x+D=A(x-a)\left(x^{2}+b x+c\right),
$$

which, from a fancied resemblance to botanical items, 18 sometimes celled a Calyx and includes forms known as
Tullp, Hyacinth, Convolvulus, Pink, Fucia, Bulbus, ete., eccording to relative values of the constants. (See Lor1a.)

In sketching the curve, it w111 be found convenient to draw as a vertical extenaion the Cublc Parabola. (See Sketching, 10.)

$$
\mathrm{y}_{2}=\mathrm{y}^{\mathrm{e}}
$$

Yalues for which y_{1} is negative correspond to imaginary velues of y, There 1 a symmetry with respect to the x axis. For example:
$y_{1}=y^{2}=(x-1)(x-2)(x-3)$
$\mathrm{V}_{2}=\mathrm{y}^{2}=(\mathrm{x}-1)(\mathrm{x}-2)^{2}$

813. 170

Slope at $x=I($ etc. $)$:
$\operatorname{Lim}_{x \rightarrow I}\left[\frac{y}{(x-1)}\right]=$
$\operatorname{Limit}_{x \rightarrow 1} \sqrt{\frac{(x-2)(x-3)}{x-1}}=\alpha$.
(NOTE: ScBles on X and Y-axes different).
2. GBNERAL IIENS:
(a) The Semi-Cubic Parabola $27 a y^{2}=4(x-2 B)^{3}$ is the Evolute of the Parabola $\mathrm{y}^{2}=4 \mathrm{ar}$.
(b) The Evolute of $a y^{2}=x^{3}$ 1s

$$
a(a-18 x)^{3}=\left[548 x+\left(\frac{729}{16}\right) y^{2}+a^{2}\right]^{2}
$$

BIBLIOGRAPHY

Lorie, G.: Spezielle Algeoralsche und Trenszendte ebene Eurven, Le1psig (1902) 21.

SKETCHING

ALGEBRAIC CURVES: $f(x, y)=0$.

1. INTERCEPTS - SYMIETRY - EXTENT are 1 items to be noticed at once.
2. ADDITION OF ORDINATES:

The point-wise construction of some functions, $y(x)$, Is often facilitated by the addition of component parts. For example (see also Fig. 181):

31g. 171
The general equation of second degree:

$$
\begin{equation*}
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F= \tag{1}
\end{equation*}
$$

may be discussed to advantage in the same manner.
Rewriting (1) \&s
$C y=-B x-E \pm \sqrt{\left(B^{2}-A C\right) x^{2}+2(B E-C D) x+B^{2}-C F}, 0 \nLeftarrow 0$, we let $C y=y_{1} \pm y_{2}$,

and $\quad J_{2}=\sqrt{\left(B^{2}-A C\right) x^{2}+2(B E-C D)}+E^{2}-C F$.
Here $y_{2}^{2}-\left(B^{2}-A C\right) x^{2}-2(B B-C D) x-B^{2}+C F=0$,
In which it is evident that the conic in (3) or (1) is an Ellipse if $\mathrm{B}^{2}-A C<0$, an Hyperbola if $\mathrm{B}^{2}-A C>0$, a Parabola if $\mathrm{B}-\mathrm{AC}=0$. The construction is effected by combining ordinates in (2) and (3):

Some facts are evident
(a) The center of the conic (1) is at

$$
x=\frac{C D-B E}{B^{2}-A C},
$$

$$
\ddot{Y}=\frac{A B-B D}{B^{2}-A C}
$$

(b) Since $y_{1}=-B x-E$ beats all isis $x=k$, this Line is confupste to the diameter $x=\frac{C D}{B^{2}-A C}$. In the ass of the Parabola, $\mathrm{K}_{1}=-\mathrm{B}_{7}-\mathrm{B}$ is parallel tu the axis of symmetry. This axis of s,zmetry is that inclined at Arc $\tan \left(\frac{-B}{C}\right)$ to the $y-8 y 1 \%$. The po st of tangency of the tangent with slope $\frac{C}{B}$ ia tho verite ai the Parabola.

SKETCHING

(c) Tangents at the points of intersection of the line $y_{1}=-\mathrm{Bx}-\mathrm{E}$ and the curve (1) are vertical. (In connection, see Conics, 4).
3. AUXILIARY AND DIRECTIONAL CURVES: The equations of some eurves may be put into forms where s1mpler and nore familler curves appear as helpful guldes in certain yegions of the plene. For example:

$$
y=x^{2}-\frac{1}{3 x}
$$

$$
y=e^{-x} \cos x
$$

Fic. 173
In the nelghborhood of the origin, $\frac{1}{3 x}$ dominates and the given curve follows the Hyperbole $y=-\frac{1}{3 x}, A s$ $x \rightarrow$ e, the term x^{2} dominates and the curve follows The quantity e^{-x} here controls the maximum and minimum velues of y and is celled the damping factor. The curve thus oscillates between $y=e^{-x}$ and $y=-e^{-x}$ since cosx vanies only between -1 and +1 .

SKETCHING

191
4. SLOPES AT 2HE INIERCEPT POINTS AND LANGENIS AT THB ORIGIN: Let the given curve pass through ($a, 0$). A line through this point and a neighboring point (x, y) has slope:

$$
\frac{y}{(x-s)} \cdot \text { Then } \operatorname{Lim}_{x \rightarrow s} \frac{y}{(x-a)}=m \text { is }
$$

the slope of the curve at $(a, 0)$.

Fig. 174
For exemple:

$$
\text { for Lts slope at }(2,0) \text {. }
$$

If a curve passes through the origin, its equation has no conatent term and appears:

$$
\begin{aligned}
& 0=a x+b y+c x^{2}+d x y+e y^{2}+e x^{3}+\ldots, \\
& 0=a+b\left(\frac{y}{x}\right)+c x+d y+e y\left(\frac{y}{x}\right)+e x^{2}+\ldots
\end{aligned}
$$

Or

Takirg the 11 mit heme as both x and y approach zero, the quentity $\left(\frac{y}{x}\right)$ approaches \underline{m}, the slope of the tangent at $(0,0)$:

$$
0=a+b m \quad \text { or } \quad m=-\frac{a}{b} \quad \text { whence } \quad a x+b y=0 \text {. }
$$

Trus the collection of terms of first dearee set equal to zero, is the equation of the tangent at the origin.

$$
\begin{aligned}
& y=2 x(x-2)(x-1) \quad y^{2}=2 x(x-2)(x-1) \\
& \text { has } m=\operatorname{Limit}_{x \rightarrow 2} \frac{y}{(x-2)} \\
& =\operatorname{Lim}_{x \rightarrow 2} 2 x(x-1)=4 \\
& \text { for } 1 \text { te slope at }(2,0) \text {. } \\
& \text { has } m=\operatorname{Limit}_{x \rightarrow 2} \frac{y}{(x-2)} \\
& =\operatorname{Limit}_{x \rightarrow 2} \pm \sqrt{\frac{2 x(x-1)}{(x-2)}} \\
& = \pm \propto
\end{aligned}
$$

If, however, there are no ilnear terms, the equation of the curve may be written:

$$
0=c+a\left(\frac{y}{x}\right)+e\left(\frac{y}{x}\right)^{2}+f x+\cdots
$$

and

$$
0=c+c m+e m^{2}
$$

gives the slopes \underline{m} at the orlgin. The tangents are, setting $m=\frac{y}{r}$:

$$
0=c+d\left(\frac{y}{x}\right)+e\left(\frac{y}{y}\right)^{2} \quad \text { or } \quad 0=c x^{2}+d x y+e y^{2}
$$

It is now apparent that the collection of terms of lowest degree bet equal to zero $1 s$ the equation of the tangents et the origin. Three cases arise (See Section 7 $\frac{\text { tangants }}{\text { on Singuler }} \frac{\text { et }}{\text { Points): }}$

1 f this equation hes no real factors, the curve has
no real tangents and the origin is an isolated point of the curve;
If there are distinct IInear factors, the curve has distinct tangents and the origin is a node, or multiple point, of the ourve;

If there are equal linear fectors, the orlgin is generally a ousp point of the curve. (Sae IlIustretions, 9, for an 1solated point where a cusp is indicated.)
For example:
$y^{2}=x^{2}(x-1)$

$$
y^{2}=x^{2}(1-x)
$$

$$
y^{2}=x^{3}
$$

$\stackrel{x}{\square}$
has $(0,0)$ as an 1solated poさnt

118. 175
s $(0,0)$ as a node
has $(0,0)$ as a cusp
5. ASYMFTOIBS: For purposes of curve sicetching, at asymptote is defined es "a tangent to the curve at Infinity". Thus it is asked that the Ine $y=m o x+k$ meet the curve, generelly, in two infinito points, obtalned In the fashion of a tengent. That $1 s$, the similtaneous solution of

$$
\begin{equation*}
f(x, y)=0 \quad \text { and } \quad y=m x+k \tag{1}
\end{equation*}
$$

or $a_{n} x^{n}+a_{n-1} x^{n-1}+a_{22-} x^{n-2}+$
where the a^{\prime} s are functions of m and x, must contain two roots $x=\alpha$. Now if an equation

$$
\begin{equation*}
a_{0} 2^{n}+a_{2} z^{n-1}+\cdots+a_{n-1} z+a_{n}=0 \tag{2}
\end{equation*}
$$

hss two roots $z=0$, then $a_{n}=a_{n-1}=0$. But if $z=\frac{1}{x}$, this equation reduces to the preceding. Accordingly, an equation such as (1) has two inefnite roots if $a_{n}=A_{n-1}=0$.

To determine asymptotes, then, set these caefficients squal to zero and solve for simultaneous values of m and k. For exsmple, consider the Follum:

$$
x^{3}+y^{3}-3 x y=0
$$

If $y=m x+k:$
$\left(1+m^{3}\right) x^{3}+3 n(m k-1) x^{2}$
$+3 k(m k-1) x+k^{3}=0$.
For an esymptote:
$1+m^{3}=0 \quad$ or $m=-1$
and $3 m(m k-1)=0$ or $k=-1$.
Thus $x+y+1=0$ is the
asymptote.

P1g. 176

OBSERVATIONS: Let B_{n}, Q_{n} be polynomial functions of x, y of the nth degree, each of which Intersects a line in \underline{n} points, real or imaginary. Suppose a given polynomial function can be put into the form:

$$
\begin{equation*}
(y-m x-B) \cdot P_{n-1}+Q_{n-1}=0 . \tag{3}
\end{equation*}
$$

Now any line $y=m x+k$ cuts this curve once at infinity since its simulteneous solution with the curve results in an equation of degree ($\mathrm{n}-1$). This family of parallel lines will thus contain the esymptote. In the case of the Follum Just given:

$$
(y+x)\left(x^{2}-x y+y^{2}\right)-3 x y=0,
$$

the anticipated asymptote has the form: $y+x-k=0$ and the value of k is readily determined.*

$$
\begin{aligned}
& \text { Thus: } \\
& \qquad y=-x+\frac{3 x y}{x^{2}-x y+y^{2}}=-x+\frac{\frac{y}{x}}{1-\frac{y}{x}+\left(\frac{y}{x}\right)^{2}} . \\
& \text { As } x, y \rightarrow \alpha, \frac{y}{x} \rightarrow-1 \text { and the last torm here } \rightarrow \frac{3(-1)}{1-(-1)+1}=-1 . \\
& \text { Thue } y=-x-1 \text { is the Asymptote. }
\end{aligned}
$$

Suppose the given curve of the \underline{n} th degree can be written as:

$$
\begin{equation*}
(y-m x-k) \cdot P_{n-1}+Q_{n-z}=0 . \tag{4}
\end{equation*}
$$

Here eny lino $y-m x-a=0$ cuts the curve once et infinity; the line $y-m x-k=0$ in particular cuts twice. Thus, generaliy, this latter line is an asymptote. For example:

$$
\begin{array}{l|l}
y^{3}-x^{3}+x=0 \quad(2 y+x)(y-x)-1=0
\end{array}
$$

715. 277
has $y=x$ for an ssymptote. has asymptotes $2 y+x=0$, $\mathrm{y}-\mathrm{x}=0^{*}$

* In fact, any conle whose oquation can be wittern ae $(y-e x)(y-b x)+0=0$ hes asynptotes and is accordingly a Hyperbola.

The line $y=m x+k$ meets this curve (4) again in points which $11 e$ on $Q_{n-2}=0, A$ curve of degree $(n-2)$. Thus
the three possible asymptotes of a cuble meet the curve again in three innite points upon a line;
the four asymptotes of a quartic meet the curve in elght further points upon a conlc; etc.

Thus equations of curves may be fabricated with specifled asymptotes which will intergect the curve egain in points upon specified curves. For example, a quartic with asymptotes

$$
x=0, y=0, y-x=0, y+x=0
$$

meeting the curve again in eight points on the Ellipse $x^{2}+2 y^{2}=1$, $13:$
$x y\left(x^{2}-y^{2}\right)-\left(x^{2}+2 y^{2}-1\right)=0$.
6. CRITICAL POINIS:
(B$)$ Maximum-minimum values of y occur at points (s, b) for which

$$
\frac{d y}{d x}=0, \infty
$$

with a change in sign of this derivative as x passes through A .

Maximux-minimum velues of \underline{x} oocur at those points (a, b) for which

$$
\frac{d x}{d y}=0, \infty
$$

Wlth a change in sign of this derivative as y passes through b. For example:

$$
y^{2}=x^{3}(1-x) \quad y^{3}=(x-1)^{2}(x+1)^{0}
$$

F1g. 178
(b) A Flox occurs at the point (a, b) for which (If $y^{\prime \prime}$ 18 continuous)

$$
y^{\prime \prime}=0, \infty
$$

With a change in sign of this derivative as x passes through ε. For example, esch of the curves:

$$
y=x^{3}, y^{\prime \prime} 0=0
$$

$$
y^{3}=x^{5}, y^{\prime \prime} 0=\infty
$$

F1g. 279
has a flex point at the origin. Such points mark a change in sign of the curvature (that is, the center of curvature moves from one side of the curve to an opposite side). (See Brolutes.)

Wote: Every cubic $y=a x^{3}+b x^{2}+c x+d$ is symmetrical with respect to its flex.
7. SINGULAR POINTS: The nature of these points, when located at the origin, have already been discussed to some extent under (4). Care must bo tsken, however, against immature judgment based upon indications only. Properly defined, such points are those waich satisfy the conditions;

$$
f(x, y)=0, \quad f_{x}=0, \quad f_{y}=0
$$

essuming $f(x, y)$ continuous and differentisble. Their character is determined by the quantity:

```
F}=(\mp@subsup{f}{xy}{}\mp@subsup{)}{}{2}-\mp@subsup{f}{xx}{}+\mp@subsup{f}{yy}{\prime
```

Thet 1s, for

$$
\begin{aligned}
& F<0 \text {, an 1solated (hemplt) point, } \\
& F=0, \text { a cusp, } \\
& F>0, \text { a node (double point, triple point, etc.). }
\end{aligned}
$$

Thus, at such a point, the alope: $\frac{d y}{d x}=-\left(\frac{f_{x}}{f_{y}}\right)$ has the indeterminate form $\frac{0}{0}$.

Variations in character are exhibited in the examples which follow (higher singularities, auch as a Double Cusp, osculinflexion, etc., are compounded from these simpler ones).
8. POLYNOMLALS: $y=P(x)$ where $P(x)$ is a polynomial (such curves are called "parabolld"). These have the following properties:
(a) continuous for all values of x;
(b) any line $x=k$ cuts the curve in but one point;
(c) extends to infinity in two directiona;
(d) there are no asymptotes or singularities;
(e) slope at $(a, 0)$ is Lim1t $\left[\frac{P(x)}{x-a}\right]$ as $x \rightarrow a$;
(f) if $(x-a)^{k}$ is a factor of $P(x)$, the point $(a, 0)$ is ordinary if $\mathrm{k}=1$; max-min. if k is even; 으 으으 if k 1s odd $(\neq 1)$.
9. ILLUSTRATIONS:

18. 180

Pig. 181
10. SBMI-POLYNOMIMALS: $y^{2}-P(x)$ where $p(x)$ is a polynomial (such curves are celled "semi-parabol1c"). In sketching semi-prebolic
curves, it may be found expedient to sketch the curve $Y=P(x)$ and from this obtain the desired curve by taktry the square root of the ordinates Y. Slopes at the intercepts should be checked as indiceted in (4) The exemple ehown is
$y=y^{2}=x(3-x)(x-2)^{2}$.
In projecting, the maximum $Y^{\prime} s$ and $y^{\prime} s$ occur at the same X^{\prime} s; negative Y^{\prime} s y ield no corresponding $y^{\prime} s$; the slope at $(2,0)$ is
$\operatorname{Lim}_{x \rightarrow 2} \frac{y}{(x-2)}=\operatorname{Lim}_{x \rightarrow 2} \pm \sqrt{x(3-x)}$
$= \pm \sqrt{2}$.

716. 182
11. EXAMPIRS:
(a) Semi-polynomials
$y^{2}=x\left(x^{2}-1\right) \mid y^{2}=x\left(1-x^{2}\right)$
$y^{2}=x^{2}(x-2) \quad y^{2}=x^{2}\left(2-x^{3}\right) \quad y^{2}=x^{3}(1-x)$
$y^{2}=x^{3}(x-1) \quad y^{3}=x^{4}\left(1-x^{3}\right) \quad y^{2}=x^{4}\left(x^{3}-1\right)$
$y^{2}=x^{4}\left(1-x^{2}\right) y^{2}-x^{4}\left(1-x^{4}\right) \quad y^{2}=x^{5}(x-1)^{4}$
$y^{2}=\left(1-x^{2}\right)^{3}\left|y^{2}=x(x-1)(x-2)\right| y^{2}=x^{2}\left(x^{2}-1\right)\left(x^{2}-4\right)^{3}$

SKETCHING

(b) Aestriptotge:
$y\left(a^{2}+x^{2}\right)=a^{2} x:[y=0] . \quad x^{2} y+y^{2} x=a^{3}:[x=0, y=0, x+y=0]$. $y^{3}=x\left(a^{a}-x^{2}\right):[x+y=0], x^{3}+y^{3}=a^{3}:[x+y=0]$.
$x^{3}-a\left(x y+s^{2}\right)=0:[x=0] .(2 n-x) x^{2}-y^{3}=0:\left[x+y=\frac{2 a}{3}\right]$.
$y^{2}\left(x^{2}-y^{2}\right)-2 a y^{3}+2 a^{3} x=0:[y=0, x-y=a, x+y+a=0]$.
$y(y-x)^{2}(y+a x)=9 a x^{3}, \quad(y-b)(y-a) x^{2}=a^{2} y^{2}$.
$x^{2} y^{2}-a^{2} y^{2}+b^{2} x^{2}=0 . \quad(x-7) x y-2(x+y)=a^{3}$.
$\langle x-y)^{2}(x-2 y)(x-3 y)-2 a\left(x^{3}-y^{3}\right)-2 a^{2}(x+y)(x-2 y)=0$: [four
asymptotes].
$x^{2}(x-y)(x-y)^{2}+m x^{3}(x-y)-a^{2} y^{3}=0:\left[x= \pm a, x-y+a=0, x-y=\frac{a}{2}\right.$,

$$
\left.x+y+\frac{a}{2}=0\right] \text {. }
$$

$\left(x^{2}-y^{2}\right)\left(y^{2}-4 x^{2}\right)^{2}-6 x^{3}+3 x^{2} y+3 x y^{2}-2 y^{3}-x^{2}+3 x y-1=0$ has four assmptotes which out the ourve again in elght pointe upon a orrele.
$4\left(x^{4}+y^{4}\right)-17 x^{2} y^{2}-4 x\left(4 y^{2}-x^{2}\right)+2\left(x^{2}-2\right)=0$ has asymptotes thiat out the ourve agein in pointe upon the Ellipea $x^{2}+4 y^{2}=4$.
(c) Singuler Pointo:
s($y-x)^{2}=x^{3}$ [Gupp].
$(y-2)^{2}=x(x-1)^{2}$ [Double
PoInt]
$x^{4}-2 x^{2} y-x y^{2}+y^{2}=0$ [0uer of seoond kind at origin]
$y^{2}=2 x^{2} y+x^{4} y-2 x^{4}[$ Ieolated Pt].
$x^{3}+2 x^{2}+2 x y-y^{2}+5 x-2 y$
$=0$ [Oump of e1rat kind].
$(2 y+x+1)^{2}=4(1-x)^{5}[$ Cusp]. $8^{9} y^{2}-2 a b x^{2} y=x^{5}$ [0sculinflexion].
$y^{2}-x^{2} y+x^{4} y+x^{4}=0[$ Double cuep of aecond kind at orlgin].
$y^{2}=2 x^{2} y+x^{4} y+x^{1}$ [Double Cuep].
$x^{4}-2 a x^{2} y-3 x y^{2}+a^{2} y^{2}=0$ [Cuey of eecond kind].
12. SOME OURVES AND THEIR NAMES:

Alyso1d (Catenary if a $m \mathrm{c}$): aR $=\mathrm{c}^{2}+\mathrm{s}^{2}$.
Bowditch Curves (Liess jou): $[x=a \cdot \sin (n t+c)$ See Osgood's Mechenics for fi $\left\{\begin{array}{l}\mathrm{y}=\mathrm{b}=\mathrm{ain} \mathrm{n} t\end{array}\right.$

$$
\text { Bullet Nose Curve: } \frac{\mathrm{a}^{2}}{\mathrm{x}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{y}^{2}}=1 \text {. }
$$

Certesian Oval: The locue of points whose distences, r_{1}, r_{2}, to two filxed points satisfy the relation: $r_{1}+m \cdot r_{2}=a$. The centrei Conics will be recognized as special cases.

Catenary of Uniform Strength: The form of a hanging chain in which linesr density is proportional to the tension.

Cochleotd: $r=a \cdot\left(\frac{\sin \theta}{\theta}\right)$, whis is e projection of E cylindrical Hellx.

Cochlo1d: Another rame for the Conchold of W1comedes.
Cocked Hot: $\left(x^{2}+2 a y-a^{2}\right)^{2}=y^{2}\left(a^{2}-r^{2}\right)$.
Oross Curve: $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=1$.
Devil Curve: $y^{4}+a y^{2}-y^{4}+b y^{2}=0$. This curve is found useful in presenting the theory of Rlemann surfaces and Abellan Integrals (see AMM, v 34, p 199).

Enf: $n \cdot \cos \mathrm{k} \theta=\mathrm{a}$ (an inverse of the Roses; a Cotes' Spleal).

Follum: The pedal of a Deltold with raspect to a point on a cusp tangent.

Gerono's Lemniscate: $x^{4}=e^{2}\left(x^{2}-y^{2}\right)$.

Hippopede of Eucoxus: The curve of Intersection of a circular cylinder and a tangent sphere.

Horopter: The intersection of a cylinder and a Hyperbollc Parabolold, a curve discovered by Helmholtz in his studies of phystical optics.

I'Hospital's Cubic: Identical with the Tachirnhauser Cuble and the prisectrix of Catalan.

SOME CURVES AND THEIR NANBS (Continued):
Kampyle of Eudoxus: $a^{2} x^{4}=b^{4}\left(x^{2}+y^{2}\right)$: used by
Eudoxub to solve the cube root probler.
Kappe Curve: $y^{2}\left(x^{2}+y^{2}\right)=a^{2} x^{2}$.
Lamé Curves: $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=1$. (See Evolutes).
Pearls of Sluze: $y^{n}=k(a-x) P \cdot x^{n}$, where the exponents are positive integers.

Piriform: $b^{2} y^{2}=x^{3}(a-x)$. Pear shaped. See this section 6(8).

Poinsot's Spirsi): $r \cdot \cosh k \theta=a$.
Quadratrix of H1ppiss: $r .8 \ln \theta=\frac{2 s \theta}{\pi}$
Rhodoneae (Roses): $r=a \cdot \cos k \theta$. These are Epltrocholds.

Semi-Mrident:

$$
\begin{aligned}
& x y^{2}=a^{3} \\
& \text { : Paln Stems. } \\
& x y^{2}=30^{2}(a-x) \\
& \text { : Archer' }{ }^{\text {b }} \text { Bow. } \\
& x\left(y^{2}+b^{2}\right)=a b y \\
& \text { : Twlsted Bow. } \\
& x\left(y^{2}-b^{2}\right)=a b y \\
& \text { : Pilsster. } \\
& x\left(y^{2}-b^{2}\right)=a b^{2} \\
& \text { : Tunnel. } \\
& x y^{2}-n\left(x^{2}+2 b x+b^{2}+c^{2}\right): \text { Urn, Gablet. } \\
& b^{2} x y^{2}=(s-x)^{3} \\
& \text { : Pypamid. }
\end{aligned}
$$

$d^{2} x y^{2}=(x-a)(x-b)(x-c):$ Flower Pot, Tropiy,
swing and Chair, Crane.

Serpentine: A projection of the Horopter.
Spiric L1nes of Perseus: Sections of a torus by planes taken parallel to 1 ts axis.

Syntractrix: The locus of a point on the tangent to a mectrix et a conatant dietance from the point of tan-- noe

SKETCHING

SOME CURVES AND THEIR NANES (Continued):

Mrident: $x y=a x^{3}+b x^{2}+c x+d$.

Trisectrix of Catalan: Identical with the Tachimhausen Cub1c, and l'Hospltal's Cuble.

Trisectrix of Maclsurin: $x\left(x^{2}+y^{2}\right)=a\left(y^{2}-3 x^{2}\right)$. A curve resembling the Folium of Descartes which Maclaurin used to triaect the angle.

Tsch1rnhausen's Cub1c: $a=r \cdot \cos ^{3} \frac{\theta}{3}$, a Sinusot dal Sp1ral.

Versiera: Identical $w 1$ th the W1tch of Agnesi. This is a projection of the Horopter.

VIviant'g Curve: The spherical curve $x=a \cdot \sin \varphi \cos \varphi$, $y=a \cdot \cos ^{2} \varphi, z=a \cdot \sin \varphi$, projections of which include the Hyperbols, Lemniscate, Stropho1a, and Kapps Curve.

$$
y^{x}=x^{y} ; \text { See A.N.M.: } 28 \text { (2921) 141; } 38 \text { (1931) } 444 ;
$$

oot. (1933).

BIBLIOGRAPHY

Echols, W. H.: Calculus, Henry Holt (1908) XV. Frost, F.: Curve Iracing, Macmillan (2892). H1lton, H.: Plane Algeoprac Curves, oxfond (1932). Lorla, G.: Spezielle Algebraische und Transzenderite ebene Kurven, Lelpsig (1902).
Wheleither, H.: Spezlelie ebene Kurven, Leipsig (1908).

SPIRALS

HIgIORY: The investigation of Spirala began at least WI th the ancient Greeks. The famous Equiangular Spiral was diacovered by Deacartea, its properties of selfreproduction by James (Jacob) Bernoull1 (1654-1705) who requested that the curve be engraved upon his tomb with the phrase "Eaden mutate resurgo" ("I siall arise the same, though changed")."
*Iatzman, W. Lust1ger und Merlgurdigee von Zahlen und Fozmon, p. 40 , givea a picture of the tombstone.

1. EQUTANGUIAR SPIRAL: \square (Also called Loganithmic from an equivalent form of 1 ts equetion.) Discovered by Descartes in 1638 in a study of dymamics.

IIg. 183
(a) The curve cuts a.ll radil vectores at a constant angle α. $\left(\frac{r}{r^{T}}=\tan \alpha\right)$.
(b) Curvature: Since $p=r \cdot \sin \alpha, R=r \cdot \frac{d r}{d p}=r \cdot \csc a=0 p$ (the polar normal). $R=s \cdot \cot \alpha$.
(c) Arc Length: $\frac{d n}{d s}=\left(\frac{d r}{d \theta}\right)\left(\frac{d \theta}{d s}\right)=(r \cdot \cot \alpha)\left(\frac{s \ln \alpha}{r}\right)=\cos \alpha$, and thus $s=r \cdot a e c a=P T$, where $g 18$ measured from the point where $r=0$. Thus, the Erc length 19 equal to the poler tangent (Descertes).
(d) Its pedal and thus all successive pedals with respect to the pole are equal Equiangular Splrals.
(e) Evolute: $P C$ is tangent to the evolute at C and angle $P C 0=\alpha$. OC 1 e the radius vector of C. Thue the first and all successive evolutes are equal Equiengules Spirals.
(a) Its 1nverse w th respect to the pole 13 an Equiangular Spiral.
(g) Jt 1s, Fig. 184, the stereographic projection $\left(x=k \tan \frac{\Phi}{2} \cos \theta\right.$,
$\left.y=k \tan \frac{\varphi}{2} \cdot \sin \theta\right)$ of a Loxodrome (the cunve cutcing all meridians at a constant angle: the course of a ship holding a fixed direction or the compass), from one of 1ts poles onto the equator (Helley 1696).

ME. 184
(h) Its Catacaustic and Dieceustic with the light source at the pole are Equiangular Spirals.
(1) Length of radil drawn at equal angles to each other form a peometric progresaion.
(i) Roulette: If the spiral be rolled along a line, the path of the pole, or of the center of curvature of the point of contact, is a stralght line.
(k) The septa of the Nautilus
 are Equiangular Splrals. The curve seems also to appear In the arrangement of seeds In the sunflower, the formation of pine cones, and other growths.

P16. 185

(I) The 11mit of a succession of Involutes of any goven curve is ar Equiangular 3p1ral.
Let the e!ven curve be $\sigma=f(\theta)$ and denote by g_{n} the arc langth of an nth involute. Then all first involutes are given by

$$
s_{1}=\int_{0}^{\theta}(c+f) \mathrm{d} \theta=c \theta+\int_{0}^{\theta} f(\theta) d \theta,
$$

where c represents the 21 stance measured along the tangent to the given curve. Selecting a particular value for of for all successive involutes:

$$
s_{z}=\int_{0}^{\theta}\left[c+c \theta+\int_{0}^{\theta} f(\theta) d \theta\right] d \theta
$$

\cdot
$s_{n}=c \theta+c \theta^{2} / 2!+c \theta^{3} / 3!+\ldots+\left[\int_{0}^{\theta} f(\theta) d \theta,\right]^{\text {nth }}$,

Where thia nth 1 terated integral may be bhown to $\mathrm{ap}-$ prosch zerc. (See Byerly.) Accondingly,
$s=\operatorname{Limit}_{n \rightarrow \infty} s_{n}=c\left(\theta+\frac{\theta^{2}}{2!}+\frac{\theta^{3}}{3!}+\ldots+\frac{\theta^{n}}{n!}+\ldots\right)$
or

$$
3=c\left(e^{\theta}-1\right)
$$

an Equiangular Spiral.
(in) It is the development of a Conical Helix (See Spiral of Archimedes.)
2. THB SPIRALB: $r=80^{n}$ Include as special cases the following: \qquad $r=a$
Conen but atudied perticu-
larly by Archimedes in a
tract still extant. He proiably used it to squere the circje).
(a) Its polar subnormal
is constant.
(b) Arc Length: $s=\frac{a^{2} \theta}{6}$ (Arch1medes).
(c) $A=\frac{r^{3}}{6 a} \cdot($ from $\theta=0$
to $\theta=r / a)$.
(d) It is the pedal of

7ig. 186
the Involute of a Circle
with respect to 1 ts center. This suggeste the description by a cerpenter's square rolling without slipping upon a circle, Fig. $187(\mathrm{a})$. Here $O T=\mathrm{AB}=\mathrm{a}$. Let A start at A^{\prime}, B et 0 . Then $A T=\operatorname{arc} A^{\prime} T=r=a \theta$. Thus B descrides the Spiral of Archimedes while A traces an Involute of the Circle. Note thet the center of rotation is T. Thus TA and TB, respectively, are normals to the pethe of A and B.

(e) Since $r=a \theta$ and $\dot{x}=a \dot{\theta}$, this spiral has found W1de use as a cam, F1g. 187(b) to produce un1form linear motion. The cam is pivoted at the pole and rotated with constant engular velocity. The piston, kept in contact with a opring device, hes uniform reciprocating motion.
(f) It is the Inverse of a Reciprocal Spiral with respect to the PoIe.
(B) "The osbings of oentrifugal pumps, auch as the German supercharger, follow this spiral to allow air which increases unfformly in volume with each degree of rotation of the fan blades to be conducted to the outlet Wil thout cresting back-pressure." - P. S. Jones, 18th Yearoook, N.C.T.M. (1945) 229.
(E) The ortho
saphic projection
uf a Conical Hellx
(in a plane per-
pendicular to ites
axia is a Spltal
of Archimedes. The
development of
this Hezlx, how-
ever, is an
Equiangular Spirel
(F1g. 188).

113. 188
$I=-3$ $2 \theta=a$ Reciprocal (Var1gnon 1704). (Sometimes called IYperbolic because of 1ts analogy to the equation $x y=a$).
(a) Its polar sub-
tangent is con-
stant.
(b) Its esymptote

28 e unlte from
the inttiei inne.
Limit r. $\sin \theta=$
$\theta \rightarrow 0$
$\operatorname{Limita}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\mathrm{s}$.

FIS. 189
(c) Arc Lengths of all circies (centers at the pole) masured from the curve to the axis are constent $(=a)$.
(d) The eres bounded by the curve and two radil is proportional to the difference of these radil.
(a) It is the inverse with respect to the pole of an Archimedean Spiral.
(f) Roulette: As the curve rolls upon a line, the pole describes a Tractrix.
(g) It is a path of a particle under a central foree which varies as the oube of the distanco. (See Lempiscate th and spireis 3f.)
$n=1 / 2: r^{2}=e^{2} \theta$ Parabolic (because of 1 ts anelogy to $y^{2}=s^{2} x$) (Fermat 2636).
(a) It is the inverse ofth respect to the pole of a

Ltuus.

IIg. 190
$n=-1 / 2: r^{2} \theta=\mathrm{a}^{2} \quad$ I_1tuus $(\operatorname{cotes}, 1722)$. (Similem In form to an ancient Roman trumpet.)
(a) The aress of ell circular sectors OPA are constant $\left(\frac{r^{2} \theta}{2}=\frac{s^{2}}{2}\right)$.
(b) It is the
inverse with re-
spect to the pole
of a Parebolle
Splral.
(c) Its esymptote
is the inttial line Limit $r \cdot \sin \theta=$
$\theta \rightarrow 0$

Fig. 191
$\operatorname{LimLt}_{\theta \rightarrow 0}^{\operatorname{Lin} \theta} \frac{\sin \theta}{\theta}=0$.
(d) The Ionic

Volute: Together
with other apirals,
the laltuus is used
qs a volute in
architecturel de-
sign. In prectice,
the Whorl is made
with the eurve

F1g. 192
emaneting from a circle drawn about the pole.
3. THE SINUSOIDAL SPIRALS: $r^{n}=a^{n} \cos n \theta$ or $r^{n}=e^{2} \sin n \theta$. (\underline{n} a rational number) . Studied by Kaclaurin in 1718.
(a) Pedal Equation: $r^{n+1}=a^{n} p$.
(b) Radius of Curvature: $\mathrm{R}=\frac{a^{\mathrm{n}}}{(\mathrm{n}+1) r^{n-2}}=\frac{r^{2}}{(\mathrm{n}+1) \mathrm{p}}$
which affords a simple geometrical method of con-
stiructing the center of curvature.
(c) Its Isoptic is another Slnusoldal Spiral.
(a) It le rectifiable if $\frac{1}{n}$ is on integer.
(e) All positive and negative pedals are again Sinusoldel Spirals.
(i) A body acted upon by a central force inversely proportional to the $(2 n+3)$ power of 1 ts alstence moves upon a Sinusoidal Spirai.
(g) Special Cases:

n	Curve
-2	Fiectangular Hyperbola
-1	Line
$-1 / 2$	Parabola
$-1 / 3$	Tschirnhausen Cuble
$1 / 3$	Cayley's Sextic
$1 / 2$	Cardiold
1	Clrele
2	Lemniscate

(In connection with this family see slso Pedal Equations 6 and Pedal Curves 3).
(i) Tengent Construction: Since $r^{n-1} x^{\prime}=-a^{n} \sin n \theta$,

$$
\begin{aligned}
\frac{n}{r^{\prime}} & =-\cot n \theta=\cot (\pi-n \theta)=\tan \psi \\
\text { and } \quad \psi & =n \theta-\frac{\pi}{2}
\end{aligned}
$$

which afforas an inmediate construction of an arbltrary tangent.
4. BULER'S SPIRAL: (Also onlled Clothoid or Cornu's Spirel). Studied by
Euler in 1781 in connec-
tion with an investigetion
of an elastic spring.
Definition:

Asymptotic Points:
$x_{0}, y_{0}= \pm \frac{5 \sqrt{\pi}}{\sqrt{8}}$.

Fig. 193
(a) It is involved in certain problems in the diffraction of light.
(b) It has been advocated as a tranaition curve for railways. (Since arc length 18 proportional to curvature. See AMM.)
5. COTES' SPIRALS:

These are the paths
of a particle subfect to a central force proportional to the cube of the distence. The flve varleties are included in the equation:

$$
\frac{1}{p^{2}}=\frac{A}{r^{2}}+B
$$

They are:

F1g. 194

$$
\begin{aligned}
& \text { 1. } B=0 \text { : the Equiangular Spiral; } \\
& \text { 2. } A=1 \text { : the Reciprocal Spiral; } \\
& \text { 3. } \frac{1}{T}=a \cdot \sinh \text { ne; } \\
& \text { 4. } \frac{1}{r}=a \cdot \cosh n \theta ; \\
& \text { 5. } \frac{I}{T}=a \cdot \sin \text { ne (the inverse of } \\
& \text { the Roses). }
\end{aligned}
$$

The figure 10 that of the Spirel $\mathrm{p} \cdot \sin 4 \theta=a$ and 1 ts Inverse Rose.
The Gllssette traced out by the focus of a Parabola sliding between two perpendicular lines is the cotes' Spiral: r.sin $2 \theta=a$.

BIBLIOGRAPHY

American Mathematicel Monthly: v 25, pp. 276-282. Byerly, W. B.: Galculus, G1mn (2889) 133.
Edwards, J.: Qelculus, Macmillan (2892) 329, etc.
Encyclopaedia Britannica; 14th Ed., under "Curves,
Special.
Wieleitner, H.: Spezielle ebone Kurven, Leipaig (1908) 247, etc.
Willson, F. N. : Graphics, Graphics Press (1909) 65 ff .

TROPHOID

HISTORY: Firat concelved by Barrow (Newton'a teacher) sbout 1670.

1. DESCRIPTION: Given the curve $f(x, y)=0$ and the fixed points 0 and A. Let K be the intersection
With the curve of a variable Ine through 0 . The locus of the points P_{1} and P_{2} on $O K$ such that $\mathrm{KP}_{1}=K \mathrm{KP}_{2}=\mathrm{KA}$ is the genergl Strophold.

स18. 195
2. SPBCIAL CASES: If the curve $f=0$ be the IIne $A B$ and 0 be taken on the perpendiculan $O A=a$ to $A B$, the curva 1s the more familiar Right Strophold shown in Fig. 196(a).

(e)

F1g. 196
(b)

This curve may also be generated as in Fig. 196(b). Here a circle of fixed radius a rolls upon the ine M (the
asymptote) touching it at R. The Iine AF through the fixed point A, distant 旦 unita from M, meets the circle In P. The locus of P 1 s the Right strophoid. For,

$$
(O V)(V B)=(V P)^{2}
$$

and thus $B P$ is perpendicular to $O P$. Accordingly, angle $\mathrm{KPA}=$ angle KAP , and 80

$$
K P=K A
$$

the situation of F1g. $196(\mathrm{a})$.
The special Oblique Stropinoid (Fig. 197(b)) 1a generated if $C A$ not perpendicular to $A B$.

Ih1s Strophoid, fommed when $f=0$ is a line, can be identified ss s Gissoid of a line and a circie. Thus, in Fig. 197, draw the fixed circle through A with center at 0 . Let \mathbb{Z} and D be the intersections of $A P$ extended with the I1ne I and the fixed circle. Then in Fig . 197(B):

$$
E D=a \cdot \cos 2 \varphi^{*} \cdot \sec \varphi
$$

and $A F=A K=2 a \cdot \tan \theta \cdot \sin \varphi=2 a \cdot \cot 2 \varphi^{*} \theta \ln \varphi$.
Thus $A P=E D$,
and the locus of \underline{P}, then, is the Cisso1d of the 11 ne I and the fixed circle.
3. EQUATIONS:
$\mathrm{F} \pm \mathrm{B} \cdot 196(\mathrm{a}), 197(\mathrm{a}):$
$r=a(\sec \theta \pm \tan \theta)$, (Pole at 0$)$; or $y^{2}=\frac{x(x-a)^{2}}{2 a-x}$ Fig. $195(\mathrm{~b}):$
$r=a(\sec \theta-2 \cdot \cos \theta)$, (Pole at $A) ;$ or $y^{2}=\frac{x^{2}(a+x)}{a-x}$.
B1g. $197(\mathrm{~b}):$
$r=a(\sin \alpha-\operatorname{ain} \theta) \cdot \csc (\alpha-\theta),($ Pole at 0$)$.
4. METRICAL PROPERIIES:

$$
A(100 p, F 1 g, 196(a))=a^{2}\left(1+\frac{\pi}{4}\right)
$$

5. GENERAL ITENS:
(a) It 1 s the Pedsl of a Parabola with respect to any point of its Directrix.
(b) It is the inverse of a Rectangular Hyperbola with respect to a vertex. (See Inveraion).
(c) It is a special

Kieroid.
(d) It is a sterographio projection of VIvient's Curve.
(e) The Cerpenter's Souare moves, as in the generation of the Cissold (see Cissold 4c), with one edge pasaing through the fixed polnt B (Fig. 198) while 1 ts corner A moves along the line

Fig. 198
$A C$. If $B C=A Q m a$ and C be taken $A s$ the pole of coordinates, $A B=a \cdot \sec \theta$. Thus, the path of Q is the Strophold:

```
r=a\cdot\operatorname{sec}0-2a\cdot\operatorname{cos}0.
```


GIRLIOGRAPHY

Bncyclopaedfa Britannica, 14th Ed., under "Curves, Special."
Nievenglowski, B.: Cours de Géométrie Analytique, Paris (1895) II, 117.

Wieleltner, H.: Spezielle ebene Kurven, Lelpsig (1908).

TRACTRIX
HISTORY: Studied by Huygens in 1692 and later by Leibnitz, Jean Bernoulli, Llouville, and Beltrams. Also called Tractory and Ecultengential Curve.

T1g. 199

1. DESCRIPTION: It is the path of a particle p pulled by an inextensible string whose end A moves along a line. The genersl Tractrix is produced if A moves along any specifled curve. This is the track of a toy wagon pulled along by a child; the track of the back wheel of a bicycle.

Let the particle $P:(x, y)$ be pulled wath the string $A P=$ a by moving A along the $x-a x i s$. Then, since the direction of P is elways toward A,

$$
\begin{aligned}
& x=a \cdot \operatorname{arc} \operatorname{sech} \frac{y}{s}-\sqrt{a^{2}-y^{2}} \\
& \left\{\begin{array}{l}
x=a \cdot \ln (\sec \theta+\tan \theta)-a \cdot \sin \theta \\
y= \\
x \cdot \cos \theta
\end{array}\right.
\end{aligned}
$$

$$
s=e \cdot \ln \sec \varphi
$$

$$
s^{2}+R^{2}=a^{2} e^{2 s / a}
$$

3. METRICAL PROPGRTIES:
(a) $\mathrm{x}=\frac{\mathrm{y}^{\prime}}{\mathrm{a}}$
$R=a \cdot \cot \varphi$
(b) $A=\pi B^{2} \quad\left[A=4 \int_{0}^{a} \sqrt{a^{2}-y^{2}} d\right.$
dy (from par. 2, above - ares of the ofrclo shown)].
(c) $v_{x}=\frac{2 \pi A^{3}}{3}\left(v_{x}=\right.$ half the volume of the sphere of
(d) $\Sigma_{x}=4 \pi a^{2}\left(\Sigma_{x}=\right.$ eres of the sphere of radius $\left.a\right)$.
4. GENERAL IIEMS:
(s) The Trectrix is an Involute of the Cetenary (soe F1g. 299).
(b) To construct the tangent, draw the circle with redius $\frac{8}{\text {, center }}$ at P, cutting the asymptote st A. The tengent is AP.
(c) Its Rad1si is a Kapps curve.
(d) Roulatte: It is the locus of the pole of a Reciprocel Spirel rolling upon a straight line.
(e) Schiele's Plvot: The solution of the problen of the proper form of a pivot revolving in a step where the wear is to be evenly distributed over the face of the bearing is an arc of the Tractrix. (See Miller and Lilly.)

F18. 200
(f) The Tractrix is utilized in details or flapping. (See Leslie, Oraig.)
(g) The masn or Gausa curvature of the surface genersted by revolving the curve sbout 1 ts asymptote (the arithmetic mean of maximum and ninimum curveture at a point of the surfece) is a negetive constant $(-1 / \mathrm{a})$. It is for thls reason, together with items (c) and (d) Per. 3, that the surface is called the "pseudo-sphere". It forms a useful model in the study of geometry. (See Woll'e, Elsenhart, Greustein.)
(h) From the primary definition (see figure), it is en orthogonel trafectory of a family of circies of constant radus with centers on a line.

Craig: Preatise on Projections,
Bdwards, J.: Calculua, Macmillan (1892) 357. Eisenhart, L. P.: Differential Geometry, G1nn (1909). Enovelopaedis Britannica: 14th Ed. under "Curves, Specis1.
Graustein, W. C.: Differential Geometry, Macmillen (1935).

Lesile: Geometrical Analysis (1821).
M1ler and L1lly: Mechanics, D. C. Heath (1915) 285. Salmon, G.: Higher Plane Curves, Dublin (1879) 289. Wolfe, H. E. : Non Euclidean Geometry, Dryden (2945).

TRIGONOMETRIC FUNCTIONS

HISTORY: Trlgonometry seems to have been developed, with certain traces of Indian Influence, flrst by the Arabs about 800 as an afd to the solution of astronomical problems. From them the knowledge probably passed to the Greeks. Johann MUller (0.1464) wrote the first treatise; De triangulis omnimodis; this wea followed ciosely by others.

1. DESCRIPTION:

P1g. 201
2. INTERRRELATIONS:
(s) From the figure: $(A+B+C=\pi)$

$$
\frac{a}{s \ln A}=\frac{b}{s \operatorname{nn} B}=\frac{c}{s \ln C}=2 R
$$

[^3]For example:

$\operatorname{ain} n^{2} x=\frac{(1-\cos 2 x)}{2}$	$\cos ^{2} x=\frac{(I+\cos 2 x)}{2}$
$\operatorname{tin}^{3} x=\frac{(3 \operatorname{cin} x-\sin 3 x)}{4}$	$\cos ^{3} x=\frac{(\cos 3 x+3 \cos x)}{4}$
$\sin ^{4} x=\frac{(0004 x-40082 x+3)}{8}$	$\cos ^{4} x=\frac{(\cos \operatorname{lic} x+4 \cos 2 x+3)}{8}$
$\operatorname{ein}^{5} x=\frac{(\sin 5 x-5 \sin 3 x+10 \mathrm{e} \ln x)}{16}$	$\cos ^{5} x=\frac{(\cos 5 x+5 \operatorname{cog} 3 x+10 \cos x)}{16}$

(e)

$$
\sum_{k=1}^{n} \sin k x=\frac{\sin \frac{n+1}{2} x \cdot \sin \frac{n x}{2}}{\sin \frac{x}{2}} \sum_{k=1}^{n} \cos k x=\frac{\cos \frac{n+1}{2} x \cdot \sin \frac{n x}{2}}{\sin \frac{x}{2}}
$$

(f) From the Euler form given in (b):

$\sin x=-1 . \sinh (1 x)$,	$\cos x=\cosh (1 x)$
$\sin (1 x)=1.91 \ln x$,	$\cos (1 x)=\cosh x$

3. SERIES:
(e) $\sin x=\sum_{0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}, \quad x^{2}<\infty$ $\operatorname{Cos} x=\sum_{0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}, x^{2}<\infty$ $\tan x=x+\frac{x^{3}}{3}+\frac{2}{15} x^{3}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{0}+\ldots, x^{2}<\frac{x^{2}}{4}$. $\cot x=\frac{1}{x}-\frac{x}{3}-\frac{x^{3}}{45}-\frac{2 x^{5}}{945}-\frac{x^{7}}{4725}+\ldots, x^{2}<\pi^{2}$,

$$
=\frac{1}{x}+\sum_{k=1}^{\infty} \frac{2 x}{x^{2}-k^{2} \pi^{2}}
$$

$\operatorname{sic} x=1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\frac{61}{720} x^{8}+\frac{277}{9064} x^{8}+\ldots, x^{2}<\frac{\pi^{3}}{4^{-}}$.
$080 x=\frac{1}{x}+\frac{x}{6}+\frac{7}{360} x^{3}+\frac{31}{15120} x^{5}+\ldots, x^{2}<\pi^{2}$

$$
=\frac{1}{x}+\sum_{k=1}^{\infty}(-1)^{k} \frac{2 x}{x^{2}-x^{2} k^{2}} .
$$

(b) arc ainx $=x+\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^{7}}{7}+\ldots, x^{2}<1$. $\operatorname{arccosx}=\frac{\pi}{2}-\arcsin x$.
$\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots, x^{2} \leq 1$,

$$
=\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\frac{1}{7 x^{7}}-\ldots, x>1 .
$$

$\operatorname{arccotx}=\frac{\pi}{2}-\arctan x$.
$\operatorname{arcsacx}=\frac{\pi}{2}-\operatorname{arccsc} x$.
$\operatorname{arccsc} \operatorname{coc}=\frac{1}{x}+\frac{1}{2} \cdot \frac{1}{3 x^{3}}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5 x^{5}}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 1 \cdot 6} \cdot \frac{1}{7 x^{7}}+\ldots, x^{2}>1$.
4. DIPFERENTIALS AND INTEGRALS:
$a(\sin x)=\cos x d x$ $d(\arcsin x)=\frac{d x}{\sqrt{1-x^{2}}}=-d(\arccos x)$ $\left.d(\arctan x)=\frac{d x}{1+x^{2}}=-d^{\prime} \operatorname{arccot} x\right)$
$x)=\sec ^{2} x$
$d(\cot x)=-\csc ^{2} x d x$
$\left.d(\sec x)=\sec x \tan x d x \quad d(\operatorname{arcc} \operatorname{bsc} x)=\frac{d x}{x \sqrt{x^{2}-1}}=-d / \operatorname{arc} \operatorname{coc} x\right)$.
$d(\operatorname{cose} x)=-\operatorname{cose} x \cot x d x$.

$$
\begin{aligned}
& \int \tan x d x=\ln |\sec x| \\
& \int \cot x d x=\ln |\sin x| \\
& \int \operatorname{soc} x d x=\ln |\sec x+\tan x| \\
& \int \operatorname{coc} x d x=\ln |\operatorname{cosc} x-\cot x|=\ln \left|\tan \frac{x}{2}\right| .
\end{aligned}
$$

5. GENERAL ITEMS:
(e) Periodicity: All trigonometric functions are periodic. For example:
$y=A \cdot \sin B x$ has period: $\frac{2 \pi}{B}$ and amplitude: A.
$y=A \cdot \tan B x$ has pertod: $\frac{\pi}{B}$.
(b) Harmonic Motion is defined by the differential equation:

$$
y+B^{2} \cdot 8=0
$$

Its solution is $\bar{y}=A \cdot \cos (B t+\varphi)$, In which the arbitrery constants are

A: the amplitude of the vibretion,
φ : the phare-lag.
(c) The sine (or Cosine) curve is the orthogonel projection of a cylindrical Hel2x, Fig. 203(a), (a curve outting all elements of the cylinder at the same angle) onto a plane parallel to the exis of the cylinder (See Cycloid 5e.)

(d) The Stne (or Cosine) curve is the development of an Elifintical section of a pight circular cyilinder, F18 203(0). Let the intersecting plane be

$$
\begin{aligned}
& \text { and the cylinder: }(z-1)^{2}+x^{2}=1 \\
& \text { which rolls upon the } X Y \text { plane carrying the point } \\
& P:(x, y, z) \text { into } P_{2}:(x=\theta, y) . \text { From the plane: } \\
& \qquad y=x\left(1-\frac{z}{2}\right) . \\
& \text { But } \quad z=1-\cos \theta=1-\cos x . \\
& \text { Thus } y=\left\langle\frac{k}{2}\right)(1+\cos x)
\end{aligned}
$$

A worthwhle model of thls may be fashioned from e roll of paper. When slicing through the roll, do not rlatten 1t.
(e) Mercator's Kap of a Great Circle Route:* If an alrplane travels on a great circle around the

FIE. 204 earth, the plane of the great eircle cuts an arbitrary cylinder oircumscribing the earth In an Ellipse. If the eylinder be cut and laid flat as in (d) above, the 'round-the-world' course is one period of a sine curve.
(f) Wave Theory: Trigonometric functions are fundamental in the development of rave theory. Harmonic analysis seeks to decompose a resultant form of vibration into the simple fundamental motions characterized by the sine or Cosine ourve. This is exhibited in F1g. 205.

[^4]fasultant form of vibration into the simple fundamentsl motions cherscterized by the sine or cosine ourve. Thie is eribited in the following figuree.

Composition of Sounds. A tuning fork with octave overtone would resemble the heavy curve.

Four Tuning Forks in Unison-Do-Mi-Sol-Do in ratios $4: 5: 6 ; 8$.

French Horn.
315. 205

[^5]Foumier Development of a given function is the composition of fundamentel Sine waves of inoressing frequency to form auccessive approximations to the
vibretion. Por example, the "step" function

$$
\left[\begin{array}{l}
y=0, \text { for }-\pi<x<0 \\
y=\pi, \text { for } 0<x<\pi
\end{array}\right.
$$

Is expressed as
$y=\frac{\pi}{2}+2\left(\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right)$,

Fig. 206
the first four approximations of which are ahown in FIg. 206.

BIBLIOGRAPHY

Byerly, W. E.: Bourier Soriea, G1nn (1893). Dwight, E. B.: Tables, Macmillar (1934).

TROCHOIDS

HISTORY: Special Trocholds were first concelved by Dtirer In 1525 and by Roemer in 1674, the iatter in connection with his study of the best form for gear teeth.

1. DESCRIPTION: Irochoids are Roulettea - the locus of a point rigldly attached to a ourve that rolls upon a
ilxed ourve. The name, however, is almost universally applied to Epland Hypotrochoids (the path of a point rigidly attached to a oircle rolling upon a fsxed ofrele) to which the discussion here is restricted.

2. 207
3. BQUATIONS:

Ep1trochoids

$\left\{\begin{array}{l}x=m \cdot \cos t-k \cdot \cos (m t / b) \\ y=m \cdot \sin t-k \cdot \sin (m t / b)\end{array} \quad\left\{\begin{array}{l}x=n \cdot \cos t+k \cdot \cos (n t / b) \\ y=n \cdot \sin t-k \cdot \sin (n t / b)\end{array}\right.\right.$

$$
\text { where } \mathrm{m}=\mathrm{a}+\mathrm{b}
$$

$$
\text { where } n=B-b
$$

(these include the Epl- and Hypoeycloids if $k=b$).
(a) The Limacon is the Epitrochoid where $a=b$.
(b) The Prolate and Curtate Cyclolds are Trocholds ol a. Gircie on a line (P1g. 208)

Fig. P08
(c) The E111pse is the Hypotroohold where $\mathrm{a}=2 \mathrm{~b}$. Consider generation by the point P [F1g. 209(a)]. Drew OP to X. Then, since aro IP equals erc IX, P was originally at X and P thus lies slways on the line $0 X$. Likewse, the diametrically opposite point Q 1les alweys on OY, the line perpendiauler to ox. Every point of the rolling circle accordingly describes a diameter of the fixed circle. The action here then is equivelent to that of a rod sliding with its ends upon two perpendicular lines - that 1s, a Trammel of Archimedes. Any point \mathbb{F} of the rod describes an Ellipse whose axes are oX and OX. Fur thermore, any point C, rigidly connected with the rolling circle, desoribes an Elilpse with the lines traced oy the extremities of the diameten through G as axes (Nasir, about l250).

Note that the diameter PQ envelopes an Astroid wh th OX and OY Es axes. This Astroid 18 also the envelope of the Bllipses formed by various fixed polnte F of PQ. (See Envelopes.)

(a)

(b)
(d) The Double generation Theorem (see Eplcyclolds) applies here. If the smaller circle be fixed Fig. $209(b)]$ and the larger one roll upon $1 t$, any diameter RX pesses alweys through s f'ixed point P on the amaller circle. Consider any selected point 3 of this diamoter. Since $S O$ is a constent length and SO extended passes through a fixed point F, the locus of s is a Limacon (see Limacon for a meohenism besed upon this). Accordingly, any point rigidiy atteched to the rolling circle describes a Limacon. If R be taken on tho rolling oircle, its path is a Cerdioid vith cusp at P .

Envelope Roulette: Any line Rigidly attached to the rolling circle envelopes a Circle. (See Linacon $3 k$; Roulettes 4; Glissettes 5.
(e) The Rose Curves: $r=a \cos n \theta$ and $r=a \sin n t$ are Hypotrocholds generated by a circle of radius $\frac{(n-1) a}{2(n+1)}$ rolling within a flxed alrele of radius $\frac{n(i)}{(n+1)}$, the generating point of the rolling efs. being $\frac{A}{2}$ units distant from its center. (First noticed by Suardi in 1752 and then by Ridolph1 in 1844. See Lorle.)

(a)

F1g. 210
(b)
$A s$ shown in F1g. $210(b): O B=a, A B=b, O A=A P$ $a \alpha-b 4, \beta=2(\alpha+\theta)=\frac{a}{b} \alpha \quad$ on $\quad a=\frac{2 b}{a-2 b} \theta$. Thus in polar coordinates with the initial line through the center of the ifxed circle and a maximum point of the curve, the path of P 1s;

$$
r=2(a-b) \cos (a+\theta)=2(a-b) \cos \frac{8}{B-2 b} \theta
$$

3IBLIOGRAPHY

Atwood and Pengelly: Theoretical Naval Architecture (for connection with study of ocean waves).
Edwards, J.: Calculus, Macmillan (1892) 343 ff .
Loria, G.: Spez1el1e algebra1sohe und Trenszendente ebene Kurven, Le1psig (1902) II 109.
Salmon, G.: Higher Plane Curves, Dublin (2879) VII. Willianson, B, Calculus, Longmans, Green (1895) 348 ff .

WITCH OF AGNESI

HISTORY: In 1748 , studied and named* by Marla Gaetana Agnesi (a veraatile woman - distingulshed as a lingulat, philosopher, and sommambulist), appointed professor of Mathemetics at Bologna by Pope Benediot XIV. Treated earlier (before 1666) by Fermat and in 1703 by Grands. Also called the Versiera.
" Apparentiy the reault of i miainterpretation. It aeems Acreal confured the old Italian word "veraorio" (the name civen the curva by Granai) which moans 'free to move in eny direction' with 'voraiera' which meens 'goblin', Bugabco', 'Devil s wife', atc. [See Scripts Methematica, VI (1939) 211; VIII (2941) 135 and Bchool Science and Mathewatics XIVI (1946) 57. .

Fig. 211

1. DESCRIPMION: $\&$ secant $O A$ through a selected point 0 on the fixed circle cuts the circle in Q. QP is drawn perpendicular to the diameter OK, AP parallel to it. The path of P is the witch.
2. IQUATIONS:

$$
\left\{\begin{array}{l}
x=2 a \cdot \tan u \\
y=2 a \cdot \cos ^{2} \theta
\end{array} \quad y\left(x^{2}+4 a^{2}\right)=8 a^{3} .\right.
$$

3. NETRICAL PROPERTIES:
(a) Ares between the W1tch and its asymptote is foum times the area of the given fixed circle $\left(4 \pi a^{2}\right)$.
(b) Centroid of this area lies at $\left(0, \frac{8}{2}\right)$.
(c) $V_{x}=4 \pi^{2} a^{3}$.
(d) Plex points ocour at $\theta= \pm \frac{\pi}{6}$.
4. GENBRAL IIEMS; A curve celled the Psgudo-Witch is produced by doubling the ardinates of the Witch. This curve was studied by J, Gregory in 1658 and used by Lelonitz in 2674 in derlving the famous expresston:

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

BIBLIOGRAPHY

Edwards, J.: Calculus, Macmilien (1892) 355. Encyclopaedia Britannice: 14 th 3 A. , under "Curves, Spectal.

Adattion of ordratee: 188 Aoroplano deelgn: 48 Agmee1, Marie Geetana: 237 Alexander the Great: 36 Alynotd: 203 ADolloniwe: $23,36,86,127,133$ Azbeloe: 25 Archer'e Bow: 204 Arohtmedes Spiral: \{eec

Epirels, Archimedean
Archimedes Trumpe2: 3,77,10B, 120,234
Aetrotd: $1-3 ; 63,73,78,814,109$, $111,126,140,156,251,163,169$, 174,234
Aeymptotee: $27,87,199,193,194$,
$195,202,211,213$
Aux111ary Curves: 190

Barrow: 21?
Bellevitig: 127
Beltaram 1: 221
Bermoull1: $1,12,65,67,68,69$,
81,93,143,152,175,206, 221.
Beesnt: 108,175
Bealoovituh: 72
Boltzmans: 106
Bouguer: 170
Bowditch Curvee: 203
Breohitetochrone: 68
Br1enchon: 48
Brocard: 171
Bulbue: 186
Bullet Noee Garve: 203

Calculue of Variatione: 80
Calyx: 186
Game: 6,137,210

INDEX

Numbere refer to pageo)

Cardrald: $4-7 ; 17,61,84,91,124$, $125,126,140,149,151,150,153$, $162,163,164,168,178,179,182$, 214,235
Cergenter'e Square: $28,50,209$, 219
Cartesien Oval: 149,205
Ceoe1nten Curves: $8-11 ; 143,144$ Cotacruetic: (aee Cahetics) Catelan'e Triuectrix: 203,205 Catenary: $22-14 ; 20,63,80,87,117$ $12 \mathrm{~h}, 176,17 \mathrm{~h}, 177,200,183,203$, 292
Catenary, F111ptic: $179,182,284$ Catenery, Hyperbol1c: 188,184
Catenary of Uniform Strength: 174,203
Cauatics: $15-20 ; 5,69,71,73,79$, $81,87,149,152,153,160,163$, 207
Cayley: 75; Sextic: $87,153,163$, 214
Contral force: $8,245,212,214$, 215
Centrifugal pumpa: 210
Centrode: 119
Ceoáro: $123,125,126$
Chesles: $85,129,138$
C1role: 21-95:1,5,16,17,20,30, $31,61,69,79,91,126,127,128$, $135,138,139,140,149,162,163$, $168,171,172,174,180,182,183$, 214,223,233,235
Cieeoli: $26-30 ; 20,126,129,141$, $142,143,161,163,183,218,219$ Clatraut: il
Clothoid: (eas Spirala, Euler) Cochleota: 203

Coch101d: 203
Cockod Hat: 203
Compabe Construction: 128
Conchote: $31-33 ; 30,108,109,120$,
$121,141,142,148,203$
Cones: $34-35 ; 37,38,39$
Conion: $36-55 ; 20,78,79,87,88$, 112,130,131,138, 140, 149, 156, $163,173,188,189,195,203$
Convolvulue: 186
Coronas: 81
Cornu's Splral: (ese Spirale, Suler)
Cotee: 212; Spiral (base Spirala, Cotes')
Crane: 204
Crsticel Pointe: 196
Crobe Curve: 203
Crobsed Parallelogram: 6,131 , 158,183
Cube root problem: $36,31,36,204$ Cubic, I'Hópital'в: 203,205 Cub1o Parabola: $56-59 ; 89,186,197$ Cubic, Techimheuesa: 203,205, 214
Curtate Cyclold: 65,69 (see Trocho1de)
Curvature: $60-64 ; 33,36,167,172$, $180,181,184,197,207,213,215$, 225
Curvature, Conatruction of Canter of: $34,35,145,150,213$
Cuap: $20,27,90,192,197,199,200$, 202
Cylinier: 229,230
Cyclota: $65-70 ; 1,4,63,80,89,92$, $122,125,126,136,137,138,139$,
$172,174,176,177,179,180,181$,
182,183, (вeв nleo Spicycloias)
Demping factor: 190
de Vinol, Leonarilo: 170
DeItold: $71-74$; $84,126,140,164$, 169,174,203
to Motvre: 93
Desargus: 175
Deecertas: $65,98,205,206,207$ Deviation, standard: 96
Devil Curve: 203
DIncaustic (ese Cauatices)
Diefraction of light: 215
Differential equation: 75,77
Dicoles: 26,129
Direotional Curves: 190
Diecontimuoue Curves: 100-10?
Diecriminant: $39,57,76,189$
Douh1s ganaration: 81
Duel Ity: 48
Dürer: 175,233
"e": 93,94
Elaptic epring: 215
E111pee: 36-55;2,19, 27,63,78,79, $88,109,111,112,120,139,140$, $149,157,158,164,169,173,178$, $179,180,182,183,184,189,195$, 202,299,230,234
3111ptic Catenary: 179,28e,184 Invelopen: $75-80 ; 2,3,25,50,72$, 13,85,87,91,109, 109,110,111, $112,135,139,144,153,155,160$, 161,175,180,181,234,235 Ép1: 203
Fpioyclota: $81-83 ; 4,5,63,87,122$, $126,139,152,163,169,174,177$. 180,182,183
Eptrrochotas: (see Trochotas)
Equation of asconid degree: 39, 188
Equiangular Splral (esa Sqirale, Equi angular:
Tquitengential Curve: (ввв Tractrix)
Euaxoxus, 日ippopede of: 203 Kemprie of: 174, 204
Euler: $67,71,82$
Euler form: 94,116,226
Thilar Sytral (sea Splrale, Fular)

Nvolutes: $86-92 ; 2,5,15,16,19,20$, Hnthaway: 171 57,66,68,72,79,85,135,139,149, Ebl1x: 69,203,209,211,229 152, 153, 155, 173,187,197,204, Eglmet: 201+ 207
Exponentisl Curvee: 93-97;20
Fermat: 37
Permat'e Spiral: (eee Spirale, Parabolic)
Festoon: 2014
Flex point: $10,56,87,90,296,198$ Flower Pot: 204
Follum of Descartes: 98-99;193, 205
Follum: 72; (Stmple, Double, Tri-, (uedri-: $73,140,163,164$, 174,203)
Pourler Davelopment: 232
Fro1a: 186
Functions with Discontinuous Propertiae: 100-10

Gall1eo: 12,65,66,81
Gauestan Curve: 95
Gears: 1,69,81,137,233
Gorono's Lemiliacote: 203
Oliseettes: 108-112;50,121,122,
$138,139,149,216$
Goblat: 204
Grana1: 237
Graphical solution of cubice: 57,58
Grast ofrcle route: 230
Gregory: 238
Growth, Lav of: 94
Gudervann: 113
Gudermanntan: 115
Gufllary: 69
Halley: 207
Tarmonio Analyele: 230
Harmonic Motion: 6,67,229
Hamonic Soction: 42
Hart: 131

Helmioltz: 203
Eraetan: 99
Fillock: 204
E1pplas, Quadratrix of: 204
Eippopeds of Eudoxus: 203
Efra: 138,175
Foropter: 203,204,205
1' Roepital: 68; cubic: 203,205
\#uygens: $15,66,67,86,135,152$,
$155,186,221$
Hysointh: 106
Fyparbola: $36-55 ; 19,27,63,78$,
$79,88,101,112,115,116,129,130$,
$139,140,144,149,157,163,164$,
$168,169,173,182,184,189,195$,
205,214,219
Hyperbolic Catenary: 182,184
Eyperbolio Functiona: 113-118
Ayperbolio Spiral: (see Sp1raib, Raciprooel)
Hypocycloti: $81-85 ; 1,63,71,87$,
$122,126,140,163,169,177,180$, 182
Hypotrocholás: ((ees Trocho1de)
Ionio Volute: 213
Ingrean: 127
Instantanoous Center of Rota-
tion: $119-122 ; 3,15,29,32,66$,
$73,85,153,158,176,209$
Intrineio Tquationa: 123-126; 92,180
Inveralan: 127-134; 63
Involutes: $135-137 ; 13,20,66,68$,
$85,87,125,126,155,156,164$,
$176,182,183,208,209,222$
Isolatad point: 192,197,200, 202
Isoptic Curves: $138-140 ; 69,85$, 121,213

Jonse: 2.6

Kakaya: 72
Kampyle of Eudoxus: 174,204
Kappe Curve: $174,201,205,222$
Kslvin: 127,141,142
Kierola: 141-142;29,33,219
Kite: 158
Lagrange: 15,67,75
Lembert: 113
Lamé Curva: 87,164, 204
Law of Grouth (or Decay) : 94
Lew of Binas: 225
Lsast area: 72
Leibaitz: 56,68,155,175,186, 221,238
Lemisaste, Bemoullt's: 143-
$247: 9,10,65,130,157,163,168$,
205,214
Lerniscate, Gerons ${ }^{1} 8$: 203
Light rayb: 15,86
Limaoon of Paecal: 148-151;5,7,
$26,31,108,110,121,130,139,140$,
$163,234,235$
Line motion: 84, 132, 158,210,234
Ificeagas: 6,9,28,51, 132,146,151, 156,183
Liouville: 221
L1ssajou Curves (sem Bowlitoh Curves)
L1 turue: $269,212,213$
Logerithmio Splral: (eee Spirele, Equiangrilar)
Lor1s: 186
Lucas: 171

MacIaumn: $143,160,163,182,205$, 211
Mepp 1ng: 118,223,230
Maxne11: 136,175
Meyer: 113
Nechariosel Invereors: 231
Mechanteal solution of cubie: 57

Mechanism, quick return: 183 Menュochmus: 36
Msrestor: 118,230
Mersemna: 65,81
Minimal Surfiges: 13,383
Monge: 56
Montucla: 69
Morley: 171
Motion, harmonfo: 6,229
Motion, I1ne: $84,132,158,210$, 234
Mijler: 225
Multipls point: $20,192,197,199$, 200,202

Napter: 93
Wepkion ring: 17
Neafr: 234
Neutilue, septe of: 208
Ne11: 186
Nephnold: $152-154 ; 17,73,84,87$, 126
Newton: $28,51,56,60,67,68,81$, 175
Miccmedos, Chonchoid of: 31-33; 108,142
Node: $192,197,199,200$
Normal Curve: 95,96
Normals: 91
Cptios: 40,203
Orthocentar: ep
Orthagonel trejectory: 223 Orthoptic: $3,73,138,139,149$ Orthotanlo: $15,20,87,160$ Osculating circle: 60,63 Oeculifflaxion: $198,199,200,202$ Ovals: $131,149,203$

Paim Stams: 204,
Faper Folling: 50,78
Pappue: 25
Parabola: $36-55 ; 5,12,13,19,20$, $27,69,61,64,73,76,79,80,87,88$,
$91,112,112,129,136,138,139$, $140,149,156,157,161,163,164$, $168,169,173,176,182,183,187$, $189,214,216,219$
Parebola, Cubic: (eas Cublo Parabola)
DaraboLe, Sbmi-cublc: (see Semioublo Parebola)
Perellal Curves: 155-159;79
Parallalogram, Crosaei: 6,151 , 158,183
Pascal: 36,65,248; Theoram of: 45 is.
Paarls of Sluza: 56,204
Pearcellior cell: $10,28,52,131$
Pedal Curvee: $160-165 ; 5,9,15,29$, $63,72,79,85,136,138,144,149$,
$167,179,182,203,207,209,214$,
219
Pedal Squatione: 166-169:162, 177,213
Pendulum, Cycloidal: 68
P11agtor: 204
Plnk: 186
Pirlform: 204
Pivot, Schiale'a: 222
Poinsot's Splral: 204
Pointe, Singular: $192,199,200$, 202
Polarg: $41,42,43,44,133$
Folynomiel Curves: 64,89,194,198
Polynomial Curves, Semi-: 61,87 , 201
Pover of $=$ point: 21
Probabillty Cuxpe: 95
Projection, Mercator'e: 118;
Orthogcmat: 229;
Orthograph1c: 211;
Steracgraphic: 207, 219
Prolata Cyclote: 65,69 (een Trocho1de)
2Baudo-sphers: 223
Peuco-nittch: 238

Pureust Curve: 170-171
Pyranld: 204
Ouadretrix of Hipplas: 204
Quairifolitum: 140,163
Qustelat: $15,187,160$
Qulck raturn mechanisan: 183
Fadial Curves: $172-174 ; 69,73$, 222
Radicel Axle: 22
Hadical Center: 22
Reoiprocal Bpiral: (sbe Spfrals, Reciprocell)
Roflection: (see Cauatices)
Refraction: 69, (00日 Caustics)
Fhodcnese: (sas Roser)
Fhumb 11 ne: 118
R1ocat1: 113
RtAolphi: 255
Robsrval: 65,66,148
Rommer: 1,81, 233
Roses: $85,163,174,216,255$ (al80 sse ITrochotde)
Foulattes: $175-185 ; 13,29,65,73$,
$79,110,135,136,207,212,222$,
233,235 (sea Trochoids)
Sacch1: 169
Eail, soction of: 24
Schtela's pirot: 222
Secant proparty: ?1
Semi-cubic Parebols: 186-187;61, 87,157,192,201
Sem1-polynouials: 61,87,201
Sem1-trident: 204
Septe of the Neutilue: 208
Serlae: 117, 2e7, 228, 232,238
Serpentins: 204
Shoemaksr's knife: 25
SAarpinakl: 107
Sim1litude: 22
Imeon Itris: 72
81ne Curve: 225,229,230,231,232
S1nas, Lav of: 225

SInguler points: $62,190,197$, 199,200,202
singular soluticne: 75
Sinusoidal Spirale: (soo
Epirals, Strusoidal)
Sketching: 188-205;155
Slope: 191
Slot mnchine: 96
Sluze, Pearls of: 204
Snowflake Curve: 106
Somp f11mb: 13,183
Sp1rale: 206-21.6
Splrala,
Aroh imedoan: $20,136,164,169$, 209,210,211,212
Cormu's: (bes Spirale, Euler)
Cotes' ; 72,169,215,216
Bequangular: $20,63,87,1.26$, $136,163,169,171,173,206$, 207,208,209,211,216
Eular: 136,215
Format'v: (seo Splrele, Parabolic)
Hyparbolle: (see Spirala, Reciprochl)
Parabolic: $169,212,213$
Poinsot's: 204
Reo1prosal: 182,210,211, 212,216,222
Strueostal: $20,63,139,140$, $144,161,162,153,168,205$, 213,214
Spiral Tractrix: 137
Splric Linpe of Pareaus: 204
Spring, elastic: 215
Squaring the oirole: 36,209
Stenidand deriation: 96
Stolnor: 24,127,179
Step function: 232
\$tersographic projection: 207, 219
Stropho1i: 217-220;29,129,141, 142,163,205
Stubbe: 127

Sturm: 16
Suard: : 235
Supercharger: 210
Sving and Chelr: 20
syntractrix: 204
Iangent Construction: 3,13,29, $32,41,41,46,66,73,85,119,1.39$, $145,150,153,168,214,2 e 2$ angonte at orig1n: 291,192
Lautochrone: 67,85
Taylor: 75
Terquem: 160
Torus: 9,204
Iractory: (sice Traotrix)
Trectr1x: $281-224 ; 13,63,87,126$, 137,174, 182, 2014,212
Trains: 24
Trajectory, orthogonal: 223
Iremal of Arahimades: $3,7,108$, 120, 234
Transition ourva: 56,215
Trident: 205
Trifolfum: (sse Follum)
Trigoncmetrio functions: $225-232$
Trisection: $33,36,58,205$
Trisectrix: 149,163,203,205
Trocholde: $233-236 ; 120,122,138$,
$139,148,176,201$
Trophy: 204
Isch1mhausan: $15,152,203,205$, 214
Tucker: 172
Tulip: 186
Tunnel: 204
Twisted Bow: 204
unduzotd: 284
Urn: 204
Varignon: 211
Vers1ara: (ase Witoh of Agnaed) Versorio: (
Vibration: $68,230,231,232$

Fivian ' B Curve: 205,219
Folute: 213
Von Koch Gurva: 106
Woll1s: 65
Watt: 143
Wave thaory: 230

We1ergtrase: 113
Weierstrase function: 107
Whave11: $87,123,124,125,126,180$
Witch of Agnas 1: 237-238; 205
Wran, Sir Chrietopher: 66
$y^{x}=x^{y}: 205$

[^0]: *Thus any equation harogereous in x, y, z ie a cone with vertax at the orlyin.

[^1]: *This is a Gliseatte: the envelopa of one alde of a Carpenter'e equary those comer movee along a circle wille 1te other leg pasese through a flxed point. See ciesold 4.

[^2]: *Thie procosesion is the one devised by Boltamann to visualize cortain theorem in the theory of gasee. See Vath. Annalan, 50(1898).

[^3]: $\sin \mathrm{A}=\sin (\mathrm{B}+\mathrm{C})=\sin B \cos \mathrm{C}+\cos \mathrm{Bs} \ln \mathrm{C}$
 $\cos (B+C)=\cos B \cos C-\sin B \sin C$

[^4]: * A Nercetor map of a peth on the earth (tho oarth eaumed to be ophorical) is fomed by projecting the peth onto the wall of a eixouxsoribing cylinder - the earth'e sentor being the point of projection. The cylinder is then daveloped.

[^5]: Hrcm Hericin'o Fundemental Matherantice, Lourtegy of Prantice-Ha21,

