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PREFACE

lume proposes to supply to student and teacher

,n properties of plane curves. Rather

U^ Yc 31 r , 'f Lr!-ormation

e

vhi Ch might be found

useful in the classroom and in engine

alphabetical arrangement is 3 aid in the s

Evolutes, Curve Sketching, and

:s readily understandable. If 1

bfi

i

Stropho:



Space Is provided occasionally for the reader to ir

sert notes, proofs, and references of his own and thus

It is with pleasure that the author acknowledges
valuable assistance in the composition of this work.
Mr. H. T. Guard criticized the manuscript and offered
helpful suggestions; Mr. Charles Roth and Mr. William

HISTORY: The Cycloidal curves, including the Astroid,

;,„ r e discovered by Roemer (1674) In his search for the

be st form for gear teeth. Double generation was first

noticed by Daniel Bernoulli in 1725-

1. DESCRIPTION: The d is a hypo y loid of f ur

Le roll

radius four Lmes as la ge-

fixed circle

-oiling upon the ins

(See Epicycloids)



ASTROID

EQUATIONS:

x1 + y
1 - a1 [:::::::

=

(f)(3
cos

= (f)(3 sin

. METRICAL PROPERTIES:

L = 6a

:ion: (Fig. l) Through P d

i the circle of radius ^

BIBLIOGRAPHY

Edwards J.- Calculus , Macmillan (1892) 337-

Salmon 'g
• Higher Flare Curves , Dublin (1879) 278.

Wleleitner, H. : Spezielle ebene Kurven , Leipzig (1908).

dl in i , _ i _ i , _. nans, Green

(1895) 339-
Section on Epicycloids , herein.



HISTORY: The Cardioid Is a member of the lamiiy c

cloidal Curves, first studied by Roemer (1674) ir

vestigation for the best form of gear teeth.

1. DESCRIPTION: The Cardioid is an Epicycloid of

cusp: the locus of a point P of a circle rolling

the outside of another of equal size. (Fig. 3a)

Double Generation: (Pig. Jh) .
Let

erated by the point P on the rolling ci

Draw ET-, OT'F, and PT' to T. Draw PP t

through T, P, D. Since angle DPT = |, t

has DT as diameter. Now, PD is parallel

arc T'P = arc T'X. Accordingly,

arc TT'X = 2aB = arc TP

.

CARDIOID

t-v,c curve may be described as an Epicycloid in
Thus the cui re «uj uc uc=.-i uc

1 ,. ,

ays: by a circle of radius a, or by one of radius £

I

,.., as shown upon a fixed circle of radius a.

2. EQUATIONS:

(x
2 + y

2 + 2ax)
2 = 4a2 (x

2 + y
2

) (Origin at cusp).

r = 2a(l + cos B), r = 2a(l + sin 0) (Origin at ci

9 ( r
2 _ a

2
) = 8p

2
. (Origin at center of fixed circ

fx = a(2 cos t - cos 2t)

y= a(2slnt-sln2t)> * =*(-»- e
2" )

.

r
3 =4apS

. s=8a-cos(^).

9R = 64a'

3. METRICAL PROPERTIES:

2 X - (^ )(.a 2 )

ler cardioid.

scial limacon :

3 parallel.



CARDIOID

rotated' with
he oardioid be pivo
constant angular ve

ted at the cus
locity, a pin,

P and

fixed straight lin

harmonic motion. Thu

a(l + cos 0),

«) = -k2 (r - a),

fe(r- a) =- k
2 (r- a),

il) crossed parallelograms, joined

CARDIOID

= OD = b; AO = BD = CP = a; BP = DC = c

t all times, an;;le F ingle COX. Any point

BIBLIOGRAPHY

KeoTO and Paires: Mechanism , McGraw Hill (1931)-

L Sketch and -Model

. v. Press, (1941) 182.



CASSINIAN CURV

2. EQUATIONS:

[(x - a)
2 + y

2 ]'[U + a)
2

n

[Fi = C-a,o) F 2 = (a,o)]

3. METRICAL PROPERTIES:

(See Section on Lemniscate)

I
CASSINIAN CURVES

If.
GENERAL ITEMS:

--'en formed by a plane paral-

le l to the axis of the torus

its center, of a Rectanrular [yprrbola.

(d) The points P and P' of the linkage shown in



CASSINIAN CURVES

; the coordinates of Q and P be (p,0) and (r,6),^

.re always at right

c
2

- 4a
2 sin

2
8.

;ely. Since 0, D, and Q 1

angles. This

(O'q)
2 = (DQ)

2
- (DO)

2

The attached Peaucellier cell inyerts the point

P under the property

..!
;

.:
;

" ;..,: "
. . <

Let
Pig 9, be Fi,

^N. k
2
?

it pr

off

rv \ FiC perpen-
liar to FiF 2

if the circle

any radius

h B FiX . Dr IV cx

ana perpen-

dieuiar CY.

CASSINIAN CURVES

!>iY are focal radii (measured from F

BIBLIOGRAPHY

Salmon G. : Higher Plane Curves , Dublin (1879) 44,126.

willson F. N.: Graphics , Graphics Press (1909) 74.

Williamson, B. : Calculus , Longmans, Green (1895) 233,533-

Yates, R. C. : Tools , A Mathematical Sketch and Model

Book, L. S. U. Press (1941) 186.



CATENARY

HISTORY: Galileo w£ s the first to inv stigate tt

noulli

in I69I obtained i B true form and ga re some of its

properties.

1. DESCRIPTION: Th

perfectly flexible

hanging from two s

inextensible chain

rpports not in the

of unifor n densi
al lin

2. EQUATIONS: If

T cos <f
= ka

3 sh(^) = (f)(e
a

+ e
a

) ; y
2

=

CATENARY 3

i. METRICAL PROPERTIES:

A = a-s = 2(area triangle PCB) S x = it(ys + ax)

4. GENERAL ITEMS:

(b) Tangents drawn to the curves y = e , y =

(c) The path of B, an involute c

(e) It is a plane section of the surface of least area

(a soap film catenoid) spanning two circular disks,

Pig. 11a. (This is the only minimal surface of revolu-



CATENARY

section of a sail bounded by two

perpendicular to the plane of t

sail 'is normal to the element and proportional to the

square of the velocity, Fig. lib. (See Routh)

Routh, E. J.: An
p. 310.

Vallis! Edinburgh Trans ." XIV, 625

BIBLIOGRAPHY

14th Ed. under "Curves,

Statics , 2nd Ed. (I896) I fl 458,

Dublin (1879) 287.

HISTORY: Causti

ouetelet, Lagrange, and Cayley.

1. A ^caustic curve 1 s the

envelope of Light ra ys,

emitted from a radia nt

S, afte r re-

refracti on by

a given curv e f = The

caustics by reflect on

and refract! on are ailed

catacaustic and dia aus-

3. The instantaneous ;er of motion of S is T. Thus

ape of normals , TQ, _to the ort

is the evolute of the ortho -

3 locus of P Is the pedal of the reflecting curv

a respect to S. Thus the orthotomic is a curve _sln

to the pedal with double its linear dimensions.



'

;
;.. ,.:,'

con whose pole is the radiant point. With usual x,y ax.

[radius a, radiant point (c,o)]

E(W2
- a*KxE +

lowing forms:

(e) Fig- 15 (f)

With the source S at «, With the source S on the

the incident and reflected circle, the incident and

rays make angles with reflected rays makes angle

the normal at T. Thus the 6/2 with the normal at T.

fixed circle 0(a) of Thus the fixed circle and

radius a/2 has its arc AB the equal rolling circle

equal to the arc AP of the have arcs AB and AP equal.

circle through A, P, T of The point P generates a

radius a/4. The point P of Cardioid and TPQ is its ta

this latter circle gener- gent (AP is perpendicular
ates the Nephroid and the to TP).
reflected ray TPQ is its
tangent (AP is perpendicu-
lar to tp).

These are the bright curves seen on the surface of cof-
fee in a cup or upon the table inside of a napkin ring.



7- 2512 Caustics by. Refraction ( Dlacausties ) at a Line L

ST Is Incident, QT refracted, and S is the reflectic

S in L. Produce TQ_to meet the variable circle drawl

through S, Q, and S in P . Let the angles of inciden.

and refraction be 6i and 8 2 and H =
PS - PS =

. The

SS

tus of P

is tl en an hyper bo La wi th

S, S

ss/n
PQT a

,"1
1

ty
~mLl "The

-ays PQT
-bola is

(UlUl e, the

(Pig 17)



THE CIRCLE

d) If the point i

-efleoted rays are all noi

- 2 = A COS 29 + B having

1
DESCRIPTION: A circle is a plane continuous curve all

of whose points are equidistant from a fixed coplanar

2. EQUATIONS:

(x - h)
2 + (y - k)

E
= a

2

x
2 + y

2 + Ax + By + C = C

. METRICAL PROPERTIES:

L = 2na 2 = 4na
2

4. GENERAL ITEMS:

BIBLIOGRAPHY

leal Monthly: 28(1921) 182,187-

Dayley A.- "Memoir on Caustics", Philosophical Trans -

actions
'

(1856)

Heath, R. S.: Geometrical Optics (1895) 105-

Salmon G. : Higher Plane Curves , Dublin (1879) 98.

r-cle, produc
circle divides car:.! line : ; constant; i.e., PA PB

= PD-PC (since the arc subtended by / BCD plus that

subtended by L BAP Is the entire circumference, tri-

angles PAD and PBC are similar). To evaluate this

constant, p, draw the line through P and the center

of the circle. Then (P0 - a)(P0 + a) = p = (P0)
2

- a
2

.

The quantity p is called the power of the point P with

respect to the circle. If p <, = , > 0, P lies re-



The locus of all points P which have equal power I

respect to two fixed circles is a line called the

Fig. 'l8(b).

a point called the radical center , a point having

equal power with respect to each of the circles and

equidistant from them.

Thus to construct the radical axis of two circles,

first draw a third arbitrary circle to intersect the

two. Common chords meet on the required axis.

(b) Similitude . Any two coplanar circles have center

0'' similitude: the intersections I and E (collinear

with the centers) of lines joining extremities of

parallel diameters.

The six centers of similitude of three circles lie t

threes on four straight lines.

nine-point circle of a triangle is its orthocenter.



THE CIRCLE

srseotlng circles and to another mem-

La called a train . It Is not to be

Two concentric circles admit a Stelne

angle subtended at the center by each circle of the

train is commensurable with 360°, i.e., equal to

arcs AXB BYC, AZC
(A,B,C c llinear)

' Fe

.

Studied y Archi-
medes, s me of its
properti s are

1. jSb + BYC = AZC.

2. Its a ea equals

the area of th

3. Clrcl s ins

EE^3 (-ert,using Aas

BIBLIOGRAPHY

Daus , P . H . : College G

Johnson, R. A. : Modern
113.



CISSOID

HISTORY: Diodes (between 250-100 BC) utilized the

nary Cissoid (a word from the Greek meaning "ivy")

finding two mean proportionals between given length

progression. This is the cube-root problem since

x
3 =-). Generalizations follow. As early as 1689,

device for the construction of the Cissoid of Diocl

1. DESCRIPTION: Given t ves y = fl (x), y = f B (x)

and the fixed point 0. Le

Q and R be the intersect!

of a variable line throug

the given curves. 1

OP = (OR) - (OQ) = QR

rough 0, and the line L

b) distance from 0. The

the locus of P on the variable

Let the two given

perpendicular 1

ordinary Clsso:

secant through such that OP = r = QR.

The generation may be effected by the inte)

of the secant OR and the circle of radius a t!

L at R as this circle rolls upon L. (Fig. 24)

2. EQUATIONS:

(If b = 0: r = 2a-sin e

Cissoid of Diodes) .

(1 + t
2

)

+ (a + b

1 of Diodes: V(rev. about asymp.) = 2u
2
a
3

x(area betw. curve and asymp. ) =—



>) A family of these

Ilssolds may be generated

Dy the Peaucellier cell

r = (^) See 0- 2c-cos 8,

b) The Inverse of the family in (a) is,

center of inversion at 0)

y
2 + x

2
(l - 4c

2
) = 2cx,

in Ellipse, a Parabola , an Hyperbola if c

respectively. (See Conies, 17 )

.

Q (Newton). The

fixed point A

moves along CA
while the other
edge of the

square passes

fixed point on
the line BC per-

The point Q describes a Strophoid (See Strophoid 5e).

(d) Tangent Construction : (See Fig. 26) A has the

at B moves in the direction BQ. Normals to AC and BQ
at A and B respectively meet in H the center of rota-
tion. HP is thus normal to the path of P.

(g) The Cissold as a roulette : One of the curves is

the locus of the vertex of a parabola which rolls upor

an equal fixed one. The common tangent reflects the



( j ) The Stropn.

ire thr e cei ter with re spec

irele. of Dioc

r plan

k) The i of 2

e Lord).

: of parallel lire

BIBLIOGRAPHY

Hilton, H. : Plane Algebraic Curves, Oxford (1932) 175,

203.
I

I . _ r 1 1 , . I
in-

I

Salmon, G. : Hi gher Plane Curves , Dublin (1879) 182ff.

I , /'r _ I C'
'+• Aral tique , Pari:

(1895) II, 115.

L -J. ;-:-•. " 'i.i .'.•.• ..._. _.:

Co nell t 1 I ( i4u) 77-

CONCHOID

HISTORY: Nloomedes (about 225 BC) utilized the Cc

(from the Greek meaning ,! shell-like" ) in finding
proportionals between two given, lengths (the cube

The Conchoid of Nloomedes is the Conchoid of a Line



= f(8) and

32 CONCHOID

2. EQUATIONS:
General: Let the given curve be
origin. The Conchoid is

r = f(6) + k.

The Conchoid of Mcomedes (for the figure above

solateouble p_c

= > k, i ^el.y.

3- METRICAL PROPERTIES:

dlcular to AX at A meet
in the point H, the cen
of OA. Accordingly, HPi

._ (See Pig. 28). The perpen-
the perpendicular to OA at (

ir of rotation of any point

CONCHOID

i of an Angle XOY by the n

the ruler 2k units
apart. Construct BC
parallel to OX such
that OB = k. Draw BA
perpendicular to BC

.

Let P move along AB
while the edge of the
ruler passes through
0. The point Q traces
a Conchoid and when
this point falls on BC
the angle is trisected.

(c) The Conchoid of Nic

Mortiz, R. E.: Univ. of Washington Publications, (1923)
[for Conchoids of r = cos(p/q)e].

Hilton, H.: Plane Algebraic Curves , Oxford (1932).

3

i



. DESCRIPTION:

2. EQUATIONS: Given two surfaces f(x,y,z)

Let P i: Ux,yi,zi) be on

P:(x,y,z) a point on the

y - b - k( yi - b

for all values of

5. EXAMPLES: The cone with ve

ing the curve

fx
2

+ y
2

- £z . fx
2

+ y
2

-

The cone with ve

yVUr =0

2
- lay

The cone with vertex at (

"

r(»-p
a+

(:

>rigin containing t

2]f]_ +
[g(x-l) + Mr-g)] _ 2( z-3)

_ 1=0

(x-l)
g
+ (y-g)

g
+ g(x-l)( g -5)+My-g)( Z -3)-3-( Z -;)

g .

Jale, Neelley: Analytic G-eometry , Ginn (1938) 284.



HISTORY: The Conies seem to have bee

Menaechmus (a Greek, c .375-325 BC), t

Great. They were apparently conceive

nous problems of t

smpt t

duplicating the cube , and squaring the circle . Instead

of cutting a single fixed cone with a variable plane,

Menaechmus took a fixed intersecting plane and cones of

varying vertex angle, obtaining from those having angles

<= > 90° the Ellipse, Parabola, and Hyperbola respec-

tively. Apollonius is credited with the definition of

the plane locus given first below. The ingenious Pascal

announced his remarkable theorem on inscribed hexagons

in 1639 before the age of 16.

1. DESCRIPTION: A Conic is the li

moves so that the ratio of 1'

b (the focus) divided by

the plane of fi

dist

line (tl

2. SECTIONS OF A CONE: ConE

of angle p cut by a plane

APFD which makes an angle

ting plane at F. The element
through P touches the sphere
at B. Then

Let ACBD be the

Then if PC is pe

to this plane,

right circular cone

(PF)e

constant as P aries (a, (J constant). The
a conic according to the

ocus and corresponding dii

ersection of the two plan

NOTE: It is

may be had in
evident now that the thre

(A) By fixi g the cone and varying the

(B) By fixir

tanfandTarbitrary)?
3 "

With either ch ice, the intersecting cur\

an Ellipse if a < ft

,

a Parabola If a =
f) ,

an Hyperbola if « > (b .

types of conic



38 CONICS

3. PARTICULAR TYPE DEMONSTRATIONS: rmly remarkable that these spheres, inscribed
5 and Its cutting plane, should touch this

le foci of the conic - and that the directrices
bersections of cutting plane and plane of the

Ax*" + 2Bxy 4

; family of lir

I- 2Bm + Cms )x 2 + 2(D + Em)x + P = 0.



CONICS

he family which cut the curv

family cuts the curve just once. That is, fort

The Hyper
Hi 5 JUSt

The Ellipse Is the conic for which no line of the family
cuts the curve just once. That is, for which:

5. OPTICAL PROPERTY: A simple demonstration of this out-
standing feature of the Corics is given here in the case
of the Ellipse. Similar treatments may be presented for
the Hyperbola and Parabola.

The locus of points P for
which FiP + F 2 P = 2a, a con-
stant, is an Ellipse. Let

drawn at P. Now P is the
only point of the tangent
line for which FiP + F 2P is
a minimum. For, consider any

FiQ + F 2 Q > FiR + F 2R = 2a =

Ax
2

+ 2Bxy + Cy
£

+ 2Dx + 2Ey + F =

e point P:(h,k).

ne (whose equation

e form of a tangent
conic):

_jn

+ B(hy + kx) + Cky ^^nJ^
x + h) + E(y + k)

= o (1)

to the curve, meet- Fig. 36

). Their equations are satisfied by (h,k) thus:

+ B(hyi + kxi) + Ckxi + D(xi + h) + E(yi+k) + F

+ B(hy2 + kx 2 ) + Ckx E + D(x 2 + k) + E(y2 +k) + F

tly, the polar given by (l) contains these poin

97826



> CONICS

/(p 2Pi) ( Pi-Pi.) (P £ Q2

glvenlhTconic°an iVmrt necessarily rectangular) and let the conic (Pig.

ce (not

38b)

through^/nl
ariab

le conic
Ax

2 + 2Bxy + Cy + 2Dx + 2Ey + F =

in Qi,Q£. The locu of Pi have intercepts ai,a 2 ; b ,b2 given as the roots of

which, with P

Q,iQ2 harmonically
ides
s the

Ax 2 + 2Dx + P = and Cy2 + 2Ey + P =

polar of P 2 . Prom these

= 2 QE are in harmoni progres- _1_ 1 2D
r D .(.|)(i + i).

11 2E

bi
+

b 2 P
r E=(-|)(^+^)-

Now the polar of P(0,o) is Dx + Ey + F = C

x(J- +i) + y(i +^-) - 2 = 0.



The family of lines through their interse

This affords a simple and classical cons

point P:

Draw arbitrary secants from P and, by the intersectior

of their cross- joins, establish the polar of P. This



46 CONICS

10. P0INTWISE CONSTRI OTION OP A CONIC DETERM NED BY FIVE

GIVE:) POINTS:

Let the five poin B be numbered 1,2,3,1',

arbitrary line

'
. Draw an

through 1

,
which would me t the conic

in the require 1 point 3
i

.

. [\/___ »',--' Establish the

Y,Z and the Pa

wo points

cal line.

\</i\ This meets 2 '3 in X and

'*^~)/l \ finally 2,X me ts the

/XT ~~^ arbitrary line through 1

/ V,
in 5' . Furthe - points are

located in the same way.

Fig. 1+1

11. CONSTRUCTION OF TO A CONIC GIVE 1 ONLY BY

FIVE POINTS:

In labelling the onslder 1 and 3 as having

merp ed so that the line 1,3' is

2
o / sj the tangent. Points X, Z are

ctete rmined and the Pascal line

dra. n to meet 1' ,3 in Y. The

nlned as in (lo),

CONICS

12. INSCRIBED QUADRILATERALS: The pai

laterals inscribed t

colline

This if

theorem of Pascal.

13. INSCRIBED TRIANGLES Fur

Pascal hexagon pro-

duces a theorem on

inscribed triangles.

For such triangles,
,'

vertices meet their

opposite sides in

three collinear



14. AEROPLANE DESIGN: The c

d of them. To o

CONICS

16. CONSTRUCTION AND GENERATION: (See also Sket

The following are a few selected from many. Ex

(a) String Methods :

15. DUALITY: The Principle of Duality

of the foregoing.
eal's Theorem (1639)
lizes Into the theorer

(1806):

If a hexagon circumsei

lllnear . (This is apparent
polarizing the Pascal

;on.)



CON1CS

(a) Newton's Method: Based upon the ide of t TO pro

jective pencils, the

Newton. Two angles of

constant magnitudes

at A and B A po'rr

line. The point of
r

sides describes a

conic through A and
r

Lrcle or line. The c

17. LINKAGE DESCRIPTION: 1lie cted

mechanisms (see TOOLS)

For the >bar linkage
shown, forming a vari- ^

!L

AB = CD = 2a ; AC = BD = 2b

(AD)(BC) =4(a£
- b 2

). ^Z^^yy^
"@

A point P of CD is

selected and OP = r

drawn parallel to AD Tig- 52

and BC . OP will remain

parallel to these line d int

Let OM = c, MT = z, wh re M is the midpoin of



Drdins

CONICS

= 2(BT)cos 9 = 2(a - z)cc

l with r = 2(c + z)cos e 1

If now an inversor OEPFP ' be a

Fig. 53 so that

r-p = 2k, where
p

An Hyperbola if c < b.

18. RADIUS OF CURVATURE:

For any curve In rectangular

|i
I d + y 8

)

3/a
and N

2 = y
2
(l H

The conic y
2 = 2Ax + Bx , where A is the semi-latus

sctum, is an Ellipse If B < 0, a Parabola if B = 0,

i Hyperbola if B > 0. Here

yy' = A + Bx, yy" + y'
2

= B, and y
3y" + y

2y' 2 = By2
.

ius y
3y" = By

2
- (A + Bx)

2
= -A

2

19. PROJECTION OF NORMAL LENGTH UPON A FOCAL RADIUS:

Pi(l - e cos 0) = A, (A = serai-latus rectum).



focal radius at K. Draw

the perpendicular at K

to this focal radius

meeting the normal in C

? the Parabola, the angles at P and Q a

to a and FiQ = pi. Thus

PH = pi - pi-cos 6 = A = N-cos a.

20. CENTER OP CURVATURE:

= ^ , from (19),

"rom (18),

BIBLIOGRAPHY

Appleton Century (1937)
imetry , D. 0. Heath (1900) 155-

207.Hall (1936)
Le Analytique, Pari

(1895)-
Lmon, G.: Co ^o= Geometr

D. C. H

(1900).
jr, McGraw

Hill (1939)

112.

66.

Tools, A
"(1941) 174,

eath (1923

and Model



CUBIC PARABOLA

HISTORY: Studied particularly by Newton and Leibnitz

(1675) who sought a curve whose sv.bnorr.al is inversely
proportional to its ordinate. Monge used the Parabola

1. DESCRIPTION: The curve is defined by 1

y = Ax 3 + Bx g + Cx + D = A(x - a)(x 2
H

f^l-

2. GENERAL ITEMS:

(a) The Cubic Parabola has max-mln. points only 1

B
2

- 3AC > 0.

railroad engi

CUBIC PARABOLA

(f) It is continuous for all values of x, with no

(g) The Evolute of a£y = x
3

Is

_9_ 2 .2 128,2 e 9 wl 4 3 e g+5 .

3a
2
(x

2
.

125
y)l- -

(a- + ,«)*

(l) Graphical and Mechanical Solutions :

1. Replace x
3 + hx + k = by the sj

Only one Cubic Parabola

sd be drawn for all

3 of the rational transformation



CUBIC PARABOLA

This may be replacec

(y=x 3
, y+m(x+l)=oj. Since

the solution of each

cubic here requires only

straightedge may be at-

tached to the point (-1,0)

modatlng the quantity m.

CUBIC PARABOLA

BIBLIOGRAPHY

. : Tools , A Mathematical Ske

, R. C. : The Tri

L942).

(1941).
oblem , The Pranklir

Given the angle AOB = JO.

;hus B itself.

or the equivalent system:

y = 4x
3

, y - 3x - a = 0.

Thus, for trisection of

36, draw the line through

(0,a) parallel to the

fixed line L of slope 3-

This meets the curve



CURVATURE

1. DEFINITION: Curvature is

change of the angle of incl

respect to the arc length. Precisely,

K =fs . R =
K

'

—tfnu^ff^
ntl- y" (or -, 0); at a flex

(or -), at a cusp, R = 0.

2. OSCULATING CIRCLE:

a curve is the circle having

with the curve. That is, the

relations:

-—vf.,»i
(x - a)

2 + (y - p)
2

= r
2

(x - a) + (y -
fj)y'

=

4* _x
(1 + y'

E
) + (y - fi)y" = °

x,y,y',y" belonging to the

curve. These conditions

Fig. 60
give:

r = R, a= x - R-si if, p - 7 + R-cos <p,

mgle. This is also called the

3.

ge

as

pr

CURVATURE A
tional algeb

ain at P
:

( x

,

r THE ORIGIN

Lgin. Let A

yj. As P app

sculating ci

(Newton): We consider only

be the center of a circle

rcle. Now BP = x is a mean

2y V 2

The Quintic y = x

If the curve be given in polar coordinates, through t

pole and tangent to the polar axis, there is in like

The Cardioid

r = 1 cos B ori = ^ ' c ° 3

26 26



62 CURVATURE

4. CURVATURE IN VARIOUS COORDINATE SYSTEMS:

if = y
2U +y' 2

)

(See Conies, 18)

.

5. CUBVATURE AT A SINGULAR POINT: At a singular point of

F - fxy
2

" fxxfyy

That is, if F < there is an Isolated point , if F = 0,

The slopes y' may be determined (except when y' does not

exist) from the indeterminate form— by the approprlat

CURVATURE

6. CURVATURE FOR VARIOUS CURVES:

CHEWS EQUATION E

Hyperbola
^.inse-a* iS

Catenary

"""""^r*.

Cycloid b =V Say

x= a(t - slnt)

1

"
2S

"olold?

61.

Tractrix e . o-ln sec tp c-tan<j

SpIraT

1131,
. . a(e«P - 1, »-""

Legate
3r Lemniscate)

Ellipse a
- +l..^.^ •¥

Spir™ ^^»» an r
2

(n+ l)rn"i (n + l)p

Astroia
x
f

+ y
1

. a
1 J(axy)

1/ 3

£-o^loids p , a sin bep a(1.1.
a
)slnl, 9 , (l-b

2
)-p

7. GENERAL ITEMS:

(a) OsculatlnR circles



CURVATURE

Consider at the origin the

< => 2. (See Evolutes.)

the length of the

BIBLIOGRAPHY

HISTORY: Apparently first conceived by Mersenne and

Galileo Galilei in 1599 and studied by Roberval, Des-

cartes, Pascal, Wallis, the Bernoullis and others. It

enters naturally into a variety of situations and is

justly celebrated. (See hb and 4f.)

1. DESCRIPTION: The Cycloid is the path of a point of

circle rolling upon a fixed line (a roulette). The

Prolate at.d Curtate Cycloids' are formed if P is not c

struction, divide the interval OH (= «a) and the

icircle NH into an equal number of parts: 1, 2, 3

. Lay off lPi = HI, 2P 2 = HE, etc., as shown.

2. EQUATIONS:

r = a(l - cos t) = 2a-sin2 (^

(measured from t



(b) L( one aroh)
= 8a (since R = 0, RM = 4a) (Sir Chris

topher Wren, 1658)

.

rotation of P. Thus the tangent at P passes through

N) (Descartes).

(d) R = 4a-cos 6 = 4a-sin(|) = 2 (PH) = 2 ( Normal )

.

mated this result, In 1599 by carefully weighing

pieces of paper cut into the shapes of a cycloidal

4. GENERAL I

(a) Its evolute is an equal

Cycloid. (Huygens 1673-

)

CYCLOID

b) Since s=4a- OS §), ff
= -

c) A Tau ochrone
of

le problem
.he detern inat ion the type Oi

ib j

tial point
ng was fi bra ted by Hi

in 1687 id later di

ernoulli Euler, an 1 Lagrange.

zertical plane to a

the amplitude. Tt

mass, falling on
heights, will rea

Le of radius ^s. The period of

1 period which is independent of

two balls (particles) of the same

jycloidal arc from different



68 CYCLOID

e evolute (or an involute) of a cycloid

a bob B may be sup-

ported at to de-

Ji

y/ W_ "rairiri
T&fl

1 \%5r- :i:r;:demo

x/7 \SS? resistance) would

^<LI U>^ be constant for all

Fig. 65

ount equal time intervals. Clocks designed upon this

Princlple we re short lived.

( d) A Brach sLochrone. First

ath along which a parti-" YY ' 1696, the proble
mination of the p

le moves f om one point in a plane to another, sub-

ject to a specified

force, in the short-

lowing discussion

J

t k/ff
!

1 is essentially the

1 Iff

Jacques Bernoulli.

Solutions were also

Kg. 66 presented by Leibnit

.
1 1 'Hospital.

For a b dy falling under r-avitj along any curve

b: y - g. y = gt, y = ~r °r * = v -£

t any Inst »t , the velocity of fall is

uniform density. At any depth y, v = / 2gy"
. Let

1 layers of the medium be of infinitesimal
iepth and assume that the velocity of the particle
changes at the surface of each layer. If it is to
>ass from P to Pi to p 2 ... in shortest time, then
iccording to the law of refraction:

Thus the curve of descent, (the limit of the polygon
as h approaches zero and the number of layers incroa
accordingly), is such that (Fig. 67):

an equation that may be iden-

tified as that of a Cycloid .

(e) The parallel projection

of a. cylindrical helix onto a

plane perpendicular to its

axis is a Cycloid, prolate,

curtate, or ordinary. (Mon-

tucla, 1799; Guillery, 1847.) Fls
"

6
'

!

(f

)

The Catacaustic of a cycloidal arch for a set of
parallel ra perperdicula to its base is composed of
two Cycloidal arches, (jean Bernoulli 1692.)

(g) The isoptic curve of a Cycloid is a Curtate or
Prolate Cycloid (de La Hire 1704).

(h) Its radial curve is a Circle.

(i) It is frequently found desirable to. design the
face and flank of teeth in rack gears as Cycloids.
(Pig. 68).



DELTOID

HISTORY: Conceived by Euler in 1745 in c

1. DESCRIPTION: The Deltoid is a J-cusped Hypocycloid.

The rolling circle may be either one- third (a = ya) or

tvo- thirds (2a = Jb) as large as the fixed circle.

BIBLIOGRAPHY

: Bibl. Math. (2) vl, p.E

,;..
. , Mi ,.ci a: .: am, McGrai

. : Bibl . Math . (3) v2,p

Hill (19^1) 139

•

iblin (1879) 275-

.le, Leipsic (1912) 77-

For the double generation, consider the right-hand

figure. Here OE = OT = a, AD = AT = -^ , where is

center of the fixed circle and A that of the rollir

circle which carries the tracing point P. Draw TP t

T'E, PD and T'O meeting in F. Draw the circumcircle

F, P, and T 1 with center at A'. This circle is tanj

diameter FT' extended pass



— = j . Thus the radius of this smallest circle is ~

Furthermore, arc TP + arc T'P = arc IT'. Accordingly,

2. EQUATIONS: (where a = yo)

.

? cos t+COB 2t)

x
2
+y

2
)

2
+8bx3 - 24bxy

2
+

(^ R
2

+ 9s
2

= 64b 2
. r

2
= 9b

2
- 8p

2
.

p = b-sin Jtf. z = b( 2 e
lt + e"

2lt
).

J. METRICAL PROPERTIES:

L = 16b. <p =, it -| . R =
-J

2 = -8p.

A=2ttb 2
= double that of the inscribed circle.

4b = length of tangent (BC) intercepted by the curve.

4. GENERAL ITEMS:

(a) It is the envelope of the Simson line of a fixed
triangle (the line formed by the feet of the perpen-
diculars dropped onto the sides from a variable point

(b) Its evolute is another Deltoid.

(c) Kakeya (l) conjectured that it encloses a region

i straight

V
taking all

io least

Spiral.

to (e,o) is the family of

ble7Si-folium,
C

re P.).

on: Since T Is the

ter of rotation of

tangent thus passe
diameter through 1

P, TP is normal to

s through N, the ex

intercepted by the

tangent BC is b

catacau stic for

'orthopt ic curve

t of parallel r

;e). It ) the

nt fi

3 giv

xed at the

en lines (a

3 B, C meet at right

normals to the curve at B, C, and P all meet

point of the circumcircle

.

the tangent BC be held fixed (as a tangent)

and the Deltoid allowed to move, the locus of the

cusps is a Nephroid. (For an elementary geometrical

proof cf this elegant property, see Nat. Math. Mag.,

XIX (1945) P- 530.

2

][y
2 + (x - c)x] = 4b(x - c)y2



DELTOID
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n Mathematical Monthly , v29, (1922) 160.

. M. S., v28 (1922) 45-
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HISTORY: Leibr

1. DEFINITION:

ENVELOPES

"erential equa-

f(x, y ,p) = 0, p-g;*
X Jf

defines n p's (real or imaginary) * >
1for every point (x,y) in the plane.

/- /
F(x,y,c) = 0,

of the nth degree in c, defines
n c's for each (x,y). Thus at-
tached to each point in the plane

n corresponding slopes. Throughout
Jig. 70

the plane some of these curves
together with their slopes may be r Mil, some Imaginary,
some coincident. The locus of those nts where there
are two or more equal values of p,
thing, two or more equal values of s the envelope of
the family of its integral curves.

ch of its points
a curve of the family. The equation of the envelope
satisfies the differential equation is usually not a
member of the family.



a. double root of

'roni either of tl

[fjfx.y.p]

lely) , the envelope 1

J
F(x,y,c) =

[Fc (x,y,c) =

ENVELOPES

y = px + g(p) .

The method of solution is that of

? +*(5) + (^f)(^)-

a aa tec looua, cuspidal and nodal
:

1 (1918). For examples, see Cohen, 1

yielding:
| y

g - l6x| as the envelope.

yielding the parabola /x + /y = +1

3 of lines, the sum of

Hence , (^H^Qj = , and the general so:

tion is obtained from the first factor: 4^ = 0,

f
p

= 0, a requirement for an envelope.

J. TECHNIQUE: A family of curves may be given in terms

nected by a certain relation. The following method is

proper- and is particular y adaptable to forms which ar

homogeneous in the parameters. Thus

Their partial differentials are

f a da + ftdb = and g ada + eb db =

and thus fa = Xga , fb = Agb,

The quantities a, b may be eliminated among the equati
to give the envelope. For example:

line of constant length moving
with its ends upon the coordi-

a 2 + b
2

= 1. Their differentials

give (-4) da + ("%)db = and



Multiplying the

mg: I + I
- 1

given functions

:E:B
e second by

X, by vlrtt

x = a
3

, y = b
3

, „|,«.y». 7] an Astrc

(b) Consider co

stant area

axial ellip

jy U3ing ordinary wax paper.

its plane. Fold P over upon the circle
As P 1 moves upon the circle, the

ENVELOPES 79

an Ellipse if P be inside the circle, an Hyperbola if

outside. (Draw CP ' cutting the crease in Q. Then PQ =

P'Q = u, QC = v. For the Ellipse, u + v = r; for the

Hyperbola u - v = r. The creases are tangents since they

bisect the angles formed by the focal radii.)

For the Parabola, a fixed point P Is folded over to

P' upon a fixed line L(a circle of infinite radius).

P'Q is drawn perpendicular to L and, since PQ = P'Q, the

locus of Q is the Parabola with P as focus, L as direc-

trix, and the crease as a tangent. (The simplicity of

this demonstration should be compared to an analytical

method.) (See Conies 16.)

5. GENERAL ITEMS:

1

te s on t ie given c irve; or

"the e ivelope of circles f fl ed rad ius tangen

to the gi 'en curve; or as

the e ivelope of lines pa allel to th e tangent

tn

given curve and at a con tant distan ce from the

(d The f Lrst posit ve Pedal of a given curve is tl

3f circles through he p dal pc

ra ius ve :tor from .he pedal poin as diameter

.

(e The f Lrst negat ve Pedal is t lope of the

11 agh a poin
th radlu 3 vector from the p dal olnt.

(f If L, M, N are Linear fu ictio 13 of X ,y, the

CO

elope Lly L-o 2
h 2M- is the

M2 = L-N
,1



ENVELOPES

/elope of a line (or cur^

a curve rolling upon a f

Roulette . For example:

/elope arises in the following

ins problem (Pig. 77): Given the

curve P = 0, the point A, hot

force. Let'y = o he the line

of zero velocity.

time path from A t

the Cycloid normal to P =

generated by a circle rolling

upon y = c. However, let the

family of Cycloids normal to

P = generated by all circles

rolling upon y = c envelope the

curve E = 0. If this envelope

3 F = i
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PI- and HYPO-CYCLOIDS

ial curves were first conceived by Roemer

'i
while studying the best form for gear

and Mersenne had already (1599) <3is-

Lnary Cycloid. The beautiful double genera-

Bernoulli in 1725-

as Caustics . Rectif

jrs find forms of the cycloidal

see Proctor). They also occur

ras given by Newton in his

The Hypocycloid is gen-

erated by a point of a

circle rolling internally

upon a fixed circle.

I

2. DOUBLE GENERATION:

Let the fixed circl



82

- A'F =

EPI- and HYPO-CYCLOIDS

-rying the t

(See Fig. 79.) Draw EI', OT'F, £

intersection of TO and FP and draw t

and D. This circle is tangent to the

angle DPT is a right angle. Now sine

T'E, triangles OET' and OFD are isos

arc TP,

Hypocycloid

may be generated ir

r difference

= (a - b)cos t

= (a - b)sln t

EPI- and HYPO-CHCLOIDS

,me: (dropping

or
(a c ) generate the same curve upon a fixed circle of

radius a. That is, the difference of the radii of fixed
circle and rolling circle gives the radius of a third

circle which will generate the same Hypocycloid.

J. EQUATIONS:

st^e:
: 1 Epicycloid,

= 1 Ordinary Cycloid,

1 Hypocycloid.

I



EPI- and HYPO-CYCLOIDS

l»...... = A 2B£
|

h-- (^

• the Epicycloid

• the Hypocycloid.

|Bp = a

. METRICAL PROPERTIES:

A (of segment formed by one arch and the enter)

= ** + D-(^ where* has the valu s above.

R = AB . 0OE B9 „ ^p wlth the foregol _g values of

k. (9 may he obtained in terms of t f •om the given

[See Am. Math. Monthly (1944) p. 587 for an

demonstration of these properties.]

3lementary

5. SPECIAL CASES:

Epicycloids: If b = a...Cardioid
2b = a. . .Nephroid.

Hypocycloids: If 2b = a... Line Segment (

3b = a... Deltoid
4b = a. ..Astroid.

See Trochoids)

EPI- and HYPO-CYCLOIDS 85

6. GENERAL ITEMS:

(a) The Evolute of any Cycloidal Curve is another of

3 fori!
' d9

AB sin Btp. These evolutes are thus Cycloi
similar to their involutes with linear dimensions
tered by the factor B. Evolutes of Epicycloids ar

smaller, those of Hypocycloids larger, than the c

themselves).

an Epi- or Hypocycloid.

(c) Pedals with respect to the center are the Ros

Curves: r = c-sin(n9). (See Trochoids).

(e) The Epieycl

(f) Tangent Con

3 ( S(

us center of rotation of .P, TP is

.t at P. The tangent is accordingly
lling circle passing through N, the

ally opposite T, the point of conta
of the circles.

BIBLIOGRAPHY
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KVOLUTES

reputedly originated with

i studies on light.

Apollonius (about

If (<x,p) is this center.

where R is the radius of

curvature, cp the tangential

angle, and (x,y) a point of

the given curve. The quan-

expres
of a single v iriable whi

M = -g - R cos cp(d<p/ds) - sin <f(— ),

^=^-R=in 9(d ?/ds) + cos 9(f).

EVOLUTES

where d
2 = da

2 + dp
2

.

(h) Generally,

y
S !T! 4(c) f,



3 EVOLUTES

. EVOLUTES OF SOME CURVES:

(a) The Conies :

The Evolute of

The Ellipse: (~f + (2)* » 1 Is (|)

3

+ (|f = 1 ,

The Hyperbola: (*)* - (|)* = 1 l s (^ - (^ = 1 ,

Ha = Kb = a
2 + b

2
.

The Parabola: x
2 = 2ky Is x

2 =^ (y - k)
3

.

:er of Curvature of

EVOLUTES

<^0

7^J 1

\ /A>^

If the x-axls Is tangent at the origlr

Ho = Limit A = Limit (^) . [See Curva



. GENERAL NOTE: Where there is symmetry in the

urve with respect to a line (except for points

sculation or double flex) there will correspond

n the evolute (approaching the point of 3ymmeti

volute). This is not sufficient, however.

f a curve has a cusp of the first kind, its eve

6. NORMALS TO A GIVEN Ct RVE: Phe E /olute of a c

ntain ng
the Fo ample,

the =arabola y
E

(h,

normals h,k

y
3 + 2(1 - h)y - 2k

rom

where y epre sents the c rdina es o the ee of the nor-

mals at

nd a tTthe iffee t-

re hus, in ge era three

yi + y2 + y3 = .

If we as b two of tt e thr e no mals e c oin 3ident,

ble r

this cub c an 1 its deriv ative 3y
2 + 2(1 ) = 0, are

h-l+*=.

of the given Parabola: the envelope of its normals. Thi

evolute divides the plane into two regions from which

one or three normals may be drawn to the Parabola. Froir

points on the evolute, two normals may be established.

An elegant theorem is a consequence

The circle x
2 + y

2 + ax + by + e = n

y
2

= x in points such that

If three of these points are feet of c

to the Parabola, then y4 = and the c

A theorem involving the Cardioid ca

by inversion.

; the Parabola

I



92 EVOLUTES

7. INTRINSIC EQUATION OP THE EVOLOTE

:

Let the given curve be s = f ( <p)

with the points 0' and P ' of

its evolute corresponding to

and P of the given curve.

Then, if a is the arc length

of the evolute:

r= P"o-d<f ° * °"

In terms of the tangential

angle p, (since ? =
<f
+ £ ) ,
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EXPONENTIAL CURVES

HISTORY: The number "e" can be traced back to Napier and
the year 1614 where it entered his system of logarithms.
Strangely enough, Napier conceived his Idea of logarithms
before anything was known of exponents. The notion of a

normally distributed variable originated with DeMolvre

o England from Prance, eked out a livelihood by supply-



EXPONENTIAL CURVES

2. GENERAL I

+
k(k i)(k-a)

continuously

EXPONENTIAL CURVES 95

Ls the maximum possible number of inhabitants -

regulated, for instance, by the food supply. A
sral form devised to fit observations involves

tion f(t) (which may be periodic, for example):

£-f(t).*.(n-x) or

velocity. That i

= (^)(1 - e'***)

(/Ti/-
1

=
( e
l£

) = e"

i (or Decay) 1

>. In an ideal e

ise, pestilence,
'al populations

of individuals,

:curs in controlled

t flies and people.

3 governing law as

. THE PROBABILITY ( OR NORMAL,

1^ = e-*
£
/gJ (Fig. 87b).

(a) Since y' = -xy and y" = y(x
2

- l), the flex

points are (+1, e"
1 /2 ). (An inscribed rectangle

one side on the x-axis has area = xy = -y'. The

largest one is given by y" = and thus two corr

are at the flex points.)



EXPONENTIAL CURVES

let I' (n) =

Putting n =

EXPONENTIAL CURVES

BIBLIOGRAPHY

, J. P.: Mathematl
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specifically:

;ir-g for simplicity:

y- yo -+ (f)U + a)

completely independent of

entering the "slot

separated by nail ob-

The collection will
stogram

approximating

ber of shot in the

nal to

the coefficien
binomial expan sion.



FOLIUM

1IST0RY: First dlscussc

3F DESCARTES

FOLIUM OF DESCARTES

. GENERAL:

(a) Its a

BIBLIOGRAPHY

mica , 14th Ed. under

2. METRICAL



FUNCTIONS WITH DISCONTINUOUS PROPERTIES

may be useful at various times as counter examples to

the more frequent functions having all the regular

1. FUNCTIONS WITH REMOVABLE DISCONTINUITIES:

FUNCTIONS WITH DISCONTINUOUS PROPERTIES 101

hyperbolas
xy = ± 1 form a



.102 FUNCTIONS WITH DISCONTINUOUS PROPERTIES

3 WITH NON-REMOVABLE DISCONTINUITIES:

imit y = -j Limit y = —

X
The left and right limits are

(b) y - sin(^) is not

FUNCTIONS WITH DISCONTINUOUS PROPERTIES 103

(c) y- Limit jl.
« (1 + sin 7ix )t - 1

cut has values +1 or -1 else

Limit y - « Left and right



FUNCTIONS WITH DISCONTINUOUS PROPERTIES

3. OTHER TYPES OF DISCONTINUITIES:

(a) y = x x is undefined for

x = 0, but Limit y = 1.

FUNCTIONS WITH DISCONTINUOUS PROPERTIES 105

(b) y = x3 is undefined for x = 0, but Limit y = 0.

The function is everywhere discontinuous for x < 0.



06 FUNCTIONS WITH DISCONTINUOUS PROPERTIES

(c) By halving the sides

AC and CB of the

isosceles triangle ABC,

and continuing this

process as shown, the

A X
"saw tooth" path between

A and B is produced.

with constant length.

Tig. 101
curve of this procession

^nate^'measured ?r om A, are of the form

:

K •**, K-l,

FUNCTIONS WITH DISCONTINUOUS PROPERTIES 107

Wcr-

rig. 105

function y = S D^cosfAx)

,

equilateral triangle is trisected, the middle segment

discarded and an external equilateral triangle built

there) . The limiting curve has finite area, Infinite

The determination of length and area are good

BIBLIOGRAPHY

Edwards, J.: Calculus , Macmillan (1892) 235-

Hardy, G. H. : Pure Mathematics, Macmillan (1933)^62^
Kasner and Newman:

and Schuster (1940)

.

Osgood, V. F.: Real Variables, £

Pierpont, J.: Real Variables , G:

shots , Steohert (1938)



GLISSETTES

HISTORY: The idea of Glissettes in Si

SOME EXAMPLES:

(a) The Glissette of the vertex P of a rigid a

whose sides slide upon two fixed points A and

arc of a circle . Furthermore, since P travels

circle, any point Q of AP describes a Limacon .

(See 4).

(c) If a point A of a rod, v

given curve r = f(e), the Gl

Moritz, R. E., U. of Wash

1923, for pictures of man
varieties of this family,

If the curve be given by

p = f(9) referred to the car-

ried point P, then

are parametric equations of

the Glissette traced by P.

For example, the Astrold

3 always through

sin 2<J, y = -. sin 2cp



I
rolling

lother determlna
; the problem of 011s-

A simple illustration is the

trammel AB sliding upon two

perpendicular lines. I, the

the fixed circle with center

and radius AB. This point

i if this smaller circle

rolling internally upon

GLISSETTES

3 describes an Ellip
envelope of AB i

6. GENERAL ITEMS:

slides on the x,y axes. Tr.

>( x
a + y^ + 3a-) . a « .

=V =a*(x 2
+ y

2
).

iter of an Ellipse

xV = (a
2

- y
s
)(y

2
- b

s
).

) A Parabola slides on a straight line toi

a fixed point of the line. The locus of t

simple cloE

3 difference



circle while one arm passes through a

fixed point F. Hie envelope of the

other arm is a conic with F as focus.

(Hyperbola if F is outside the circle,

Ellipse if inside, Parabola if the

circle is a line.) (See Conies 16.)

HYPERBOLIC FUNCTIONS

: Of disputed origin: either by Mayer or by

Riccati in the 18th century; elaborated upon by Lambert

(who proved the irrationality of n). Further investigated

by Gudermann (1798-I85I), a teacher of Weierstrass. He

complied 7-place tables for logarithms of the hyperbolic

functions in 1832.

1. DESCRIPTION: These functions

^.JlTTl

BIBLIOGRAPHY

ican Mathematical Monthly : v 52, 384.

lnt, ¥. H. : Roulettes and Glissettes , London (1870).
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L4 hyperbolic functions

. INTERRELATIONS:

(a) Inverse Relations ;

arc cosh x = ln(x + Vx E
- l) , x7

arc tanh x = (|)ln[|^] ; x
2

< 1;

cosh2
x - slnh2x = 1; sechx

csch2
x = coth 2

x - 1;

Dsh(x + y) = cosh x-c

cosn
2

- ^ 2

HYPERBOLIC FUNCTIONS

(c) Differentials and Integrals:

"/.-•

- *±2 oosh iz£ .

Lnh Jx = 4sinh x + 3si



HYPERBOLIC FUNCTIONS

Thus the Hyperbolic functions are attached to the

Rectangular Hyperbola in the same manner that the

trigonometric functions are attached to the circle.

4. ANALYTICAL RELATIONS KITH THE TRIGONOMETRIC FUNCTIONS:

HYPERBOLIC FUNCTIONS

3 REPRESENTATIONS:

!•? 1
,

1-3-5

6. APPLICATIONS:

flexible"

1

hlinl ing

he Catenary, i

ng from two buj

the f a

(b) These functi 3ns play a dominan role in el

, the engin
nt hyperbolic 1

ponential form o \e solutions of es of

problems
satisfies the di ffe -ential equatior



HYPERBOLIC FUNCTIONS

V = Vr -cosh x f& + Ir .y|-sinh x /yF,

gives the voltage in terms of voltage and cum

.. ....-eater's (1512-159 1*) projection

from the center of the sphere onto its tangent cylin-

der with the N-S line as axis,

x = 8, T = gd y,

where (x,y) is the projection of the point on the

sphere whose latitude and longitude are <P and 6, re-

spectively. Along a rhumb line ,

the inclination of a straight course (line)

BIBLIOGRAPHY

Kennelly, A. E. : Applic . of Hjp. Functions to Elec. Engr.

Problems , McGraw-Hill (1912)-

Merriman and Woodward: Higher Mathematics , John Wiley

(I896) 107 ff. . . , .

Slater, J. C: Microwave Transmission, McGraw-Hill (1942)

8 ff.

Ware and Reed: Communication Clrcu: , John Wiley (1942)

INSTANTANEOUS CENTER OF ROTATION and

THE CONSTRUCTION OF SOME TANGENTS

1. DEFINITION: A rigid body moving in any manner what

neous center of rotation. This

direction of motion of any two
points A, B of the body are known.
Let their respective velocities be

Vi and V2 . Draw the perpendiculars
to Vi and V£ at A and B. The cen-

HA can move toward A or H (since

the body is rigid) and thus all
points must move parallel to Vi

.

Similarly, all points of HB move

If two points of a rig

ie instantaneous center
m of any point P of the



50 INSTANTANEOUS CENTER OF ROTATION

. EXAMPLES:

(a) The Ellip

is an Ellip se.* AH
and BH are normals

of A and B lrid°tbu.

H is the ce iter of

any
point of th

1 to the

perpendicul ir PT is

(See
Trochoids, 5e.)

(b) The Con hold*

- A, the
midpoint of the c™

moves along 'th/fix
line and P x a (ex-

through the fixed
point 0. Th point
of PiP 2 pas
through h
direction PiPe.
Thus the pe pen-
dioulars OH and AH
locate H th
of rotation The
perpendiculars to

INSTANTANEOUS CENTER OF ROTATION

?iH and P 2H at Pi and P g respectively,

of

(d) The Iso ptic of a cu eve i

angle. If t -lese tang

the normals
is the cent
body formed by the c

("ee^Usse
of P. Pc

ex of a t

the

xampl
locu
ngle.

two of whose sides t

nil

Normals to these tar gen

pass through the cer s of

the circles arid nak

stant angle
They meet a t H, the

of rotatior lo

of H is ace ordingly a circle

ngle. Thus HP is normal



!2 INSTANTANEOUS CENTER OF ROTATION

(e) The point Gllssette of a curve is the loot

a point rigidly attached t

Thus HP is normal to the path of

rig. ii9

rigidly attached to a curve that

rolls upon a fixed curve. The

point of tangency H is the center

of rotation and HP is normal to

the path of P. This is particu-

larly useful in the trochoids of

a circle: the Epi- and Hypo-

cycloids and the ordinary Cycloid.

INTRINSIC EQUATK

INTRODUCTION: The choice of reference

ticular curve may be dictated by its ]

from its properties. Thus, a system o:

coordinates will be selected for cur«

point will be expressed in a polar system with the cen-

tral point as pole. This is well illustrated In situa-

tions involving action under a central force: the path

of the earth about the sun for example. Again, if an

outstanding feature is the distance from a fixed point

upon the tangent to a curve - as in the general problem

of Caustics - a system of pedal c

selected.

The equation of curves in each of these systems,

are altered by c ertain transformations. Let a transforit

tion (within a j

system) be such that the measures of length and angle

, i, ,
:.. :..:. :

.

'. ! •
. .

!

'

of singular poir ts, etc., will be invariants. If a curv

can be properly defined in terms of these invariants it

equation would 1 e intrinsic in character and would ex-

press qualities of the curve which would not change frc

Keown and Faires: Mechanism , McGraw-Hill (1931) Chap.

Niewenglowski, B.: Cours de Geome'trie Analytique , I

(Paris) (1894) 347 ff.

Williamson, B.: Calculus , Longmans, Green (1895) 359-



INTRINSIC EQUATIONS

3 WHEWELL EQUATION: The Whewell equation is that

connecting arc length _s and tangen-

tial angle <p, where <p is measured

from the tangent to the curve at the

initial point of the arc. It will he

as the x-axis or, in polar coordi-

'olloi

-/!"<

initial line. Examples

f = a.cosh(^).

is
2 = [1 4- sinh2 (^)]dx 2

.

)dx = a-sinh(^), and |s = a -tan y]

INTRINSIC EQUATIONS

sd directly from the Whewell equation hy ]

1. For example,

'or an involute :

: The inclination <? depends of c

vhic s i measured If this point were selected
wher the tangent i a perpendicular to the original

volve the co-
func ion f cp. Thus for example, the Cardioid may

give by ither 'of .he equations: s = k-coag) or

(b) Consid

Here tan y

2. THE CESARO EQUATION: The Cesaro equation relates arc

length and radius of curvature. Such equations are
definitive and follow directly from the Whewell equatic
For example, consider the general family of Cycloidal

The arc length: ds
2

= 8a
2
(l - cos

-8a-cos(|) = -Sa-cos®

_



126 INTRINSIC EQUATIONS

3. INTRINSIC EQUATIONS OF SOME CURVES:

Curve Whewell Equation Ceearo Equation

Artroid e = a.coe 2 9 4s
2

+ E
2

= 4a
2

Cardioid s-a-cosCf) 3
Z

+ 9B
2

= a
2

Catenary b = a-tan <p s
2

+ a
2

= aB

Circle s = a-cp E . a

Ciesoid B = a( sec
3

cp - 1) 729(B+a) a
= a^s+a) 2

+ E
2

]

3

Cycloid b . a-sin <p s
2

+ B2 = a
2

Beltoid B = y COB 3?

Hypo -cycloids
s. a-sin 0,*

Equiangular s.a.(e^-l) m(s + a)«E

Circle
^

b = ^s! 2a-B.E2

Nephroid b = 6o-Bin
I

4E
2

+ B
2

. 56o
2

Iractri* b - a-m Bee „ a
2

+ B2 . a
2 -e-/a

BIBLIOGRAPHY

ins, London, 263-

INVERSION

HISTORY: Geometrical inversion seems to be due to

Stelner ("the greatest geometer since Apollonius") who

indicated a knowledge of the subject in 1824. He was

closely followed by Quetelet (1825) who gave some ex-

amples. Apparently Independently discovered by Bellavitis

in 1836, by Stubbs and Ingram in 1842-3, and by Lord

Kelvin in 1845. The latter employed the idea with con-

spici elec

1. DEFINITION: Consider the_circle

mutually Inverse with respect to

(0A)(0A) = k
2

.

- coordinates wit

bangular coordinate

(if this product Is nega
Inverse and lie on opposi

Two curves are itutually
has an inverse belonging



128 INVERSION

2. CONSTRUCTION OF INVERSE POINTS:

Fig. 125

For the point A inverse to

then from P the perpendicu-

lar to OA. From similar
right triangles

f ^ or («)(«.*.

the circle through with

center at A, meeting the

circle of inversion in P, Q.

Circles with centers P and Q
through meet in A. (For

proof, consider the similar

isosceles triangles OAP and

PDA.)

3. PROPERTIES:

(a) As A approaches the

definitely.

distance OA increases in-

(b) Points of the circle of inversion are invariant.

(c) Circles orthogonal tc the circle of inversion are

(d) Angles between two ci rves are preserved in magni-



(a) With center of inversion at a focus, the Con

i family of ovals

(a
E

+ X)
+

(b
2

+ X)
=

5. MECHANICAL INVERSORS:

, I The Hart Crossed Parall



122 INVERSION

rhombuses as shown. Its

appearance ended a long

convert circular motion

points 0, P, Q, R taken on

a line parallel to the

bases AD and BC* Draw the

circle through D, A, P,

and Q meeting AB in F. By

unanimously agreed Inso

uble. For the Inverslve

property, draw the clrc

through P with center A

Then, by the secant proi

erty of circles,

(0P)(0Q) = (od)(oc)

(BF)(BA) = (BP)<BD).

Here, the distances BA, BP,

thus BF is constant. Ac-

cordingly, as the mechanist!

is deformed, F is a fixed

point of AB. Again,

= (a-U-Ka+b) = a
2

- b
£

. (0P)(0Q)= (OF)(0A) con-
Moreover, stant

(P0)(PR) =-(0P)(0Q) =b 2

If directions be assign

by virtue of the foregoing

Thus the Hart Cell of four

Peaucellier arrangement of

eight bars.

ism to describe a circl

center of inversion) as\£
bar is added to each me Chan

ough the fixed point (the

n in Fig. 130.

to the line of fixed points

6. Since the inverse A of A

leads to the theory of polars

7. The process of inversion forms an expeditious
of solving a variety of problems. For example, t

brated problem of Apollonius (see Circles) is tc

:onfiguration is composed
of two parallel lines and
a circle. The circle tan-

elements is easily ob-
tained by straightedge
and compass. The inverse

circle of inversion
1

) IT* F1S- ^ 2

this circle followed by an alteration of its radius I
the length a is the required circle.

.



INVERSION

n is a he lpful means of generating theorem

cal prope

"If two opposite angles of a

quadrilateral OABC are supple

tary it is cyclic." Let this

figuration be inverted with r

\ spect to 0, sending A, B, C 3

)f
C

A", B, V and their circumcire

/ into the line AC. Obviously,
7— lies on this line. If B be a

*y/) moves upon a line. Thus

"The locus of the interse

of circles_on the fixed poin

HISTORY: The Involute
utilized by Huygens ir

of clocks without penc

1. DESCRIPTION: An inv

upon the curve. Or, it

string tautly unwound

BIBLIOGRAPHY

.onen, Leipsig (1906)

Oxford (1941)

Hall (1941)

,
Houghton-Mifflin (1929)



2. EQUATIONS:

. METRICAL PROPERTIES:

A = •§- (bounded by OA, OP, AP).

GENERAL ITEMS:

(e) The limit of a succession of involutes of any
giv n curve is a n Equiangular spiral. (See Spirals

Equ Langular .

)

(f) In 1891, the dome of the Royal Observatory at

nstructed in the form of the surfa

of nerated by an arc of an involute of

oir le. (Mo. Not ices Roy. Astr. Soc
.

, v 51, p. 436

(g) ial case of the Euler Spirals.

(h) The roulette of the center of the attached base

INVOLUTES

(l) Its inverse with respect to the base circle

spiral tractrix (a curve which i

has constant tangent length).
n polar coordir

(j) It is used frequently in the design of oam_

(k) Concerning its use in the construction of j

teeth, consider its generation b

together with its plane along a line, Fig. 135

of the line on the moving

gency always on the c

internal tangent (the

of action) of the two

circles. Accordingly
velocity ratio is transmitl

ntal law of gearing is satisfied. 1 dvantc

le older form of cycloidal gear tee h inc

1. velo city ratio unaffected by hang.':

2. cons
rL=rt^Mt-ur asier

4. more uniform wear on the teet

Q. Monthly , v 28 (1921) 528.

Byerly, W. E. : Calculus, Ginn (I889) 133-

, 14th Ed., under "Curves,

Huygens , C: Works, la £ ociete Hollandaise des Scie

(1888) 51 1*.

Keown and Paires: Mechar ism, McGraw-Hill (1931) 61, 125.



ISOPTIC CURVES

ISOPTIC CURVE

IISTORY: The origin of the notior

Dbscure. Among contributors to ti-

the names of Chasles on isoptios

trochoids (18^7) anli la Hlre on *

(The Orthoptic of the

Hyperbola is the circle
through the foci of the

corresponding Ellipse and

1. DESCRIPTION: The locu

the Isoptlc of the given

A special case of Orthoptics is the Pedal o:

with respect to a point. (A carpenter's square

one edge through the fixed point while the othi

forms a tangent to the curve).

2. ILLUSTRATION: It is well known that the Ortl

the Parabola is its directrix while those of the Central

Conies are a pair of concentric Circles. These are im-

mediate upon eliminating the parameter m between the

equations in the sets of perpendicular tangents that fol-

low:

tic of

of the rigid body formed by the

constant angle at-R. Thus HR is

normal to the Isoptic generated

If. EXAMPLES:

Given Curve Isoptic Curve

Epicycloid
Sinusoidal Spiral

Two Circles
Parabola

Curtate or Prolate Cycloid
Epitrochoid

Sinusoidal Spiral

Hyperbola (same focus and directrl?)



ISOPTIC CURVES

Given Curve Orthoptic Curve

Two Confocal Conic Concentr

Hypocycloid

itslnee

(a-2b) 2
"

UtoU,,*,,*. a* li» : ^-4.co *»

Sinusoidal Spiral Sinusoid al Spiral: r . ..„ 3B
k
(|) where

r-n = a11 cosrfi

729y
E l80x - 16

3(x + y) . x
3 8lyV + y

2
) - 36(x

2
- 2x f + 5y

2
) +128 =

x2y£ - Wx= + y
3

l8a
2
xy - 2ya

4
= x + y + 2a =0

NOTE: The a-Isoptlo of the Parabola y = 4ax is the

Hyperbola tanEa-(a + x)
2 = y

2
- lai and those of the

Ellipse and Hyperbola: (top and bottom signs resp.):

t Isoptics).(these include t

BIBLIOGRAPHY

Duporcq: L'Inter-m. d. Math . (1896) 291-

Encyclopaedia Britannica : UthEd., "Curves, Special."

Hilton, H.: Plane Algebraic Curves, Oxford (1932) 169-

HISTORY: This curve was devised by P. J. Kiernan in 1945
to establish a family relationship among the Conchoid ,

the Cissoid , and the Strophoid ,

1. DESCRIPTION: The center B of the circle of radius a
moves along the line BA. is a fixed point, _c units
distant from AB. A secant is dravn through and D, the
midpoint of the chord cut from the line DE which is
parallel to AB and b units distant. The locus of Pi and
P 2 , points of intersection of 0D and the circle, is the
Kieroid.



LEMNISCATE OF BERNOULLI

Clssold of t

(FiP){FEP) = a
£

(XA)(XB) = a
2

.

Thus, take FiP = XB,



LEMNECATE OF BERNOULLI

3. METRICAL PROPERTIES:

L - 4a(l

V (of r
2

=

' 2-5 2-4-9 2-4-6-13

a
2 oos 26 revolved about

2^(2 - J2).

...) (elliptic

3r jp

4. GENERAL ITEt

(a) I

(b) I

s Pedal of a Rectangular Hyperbola «

Inverse of a Rectangular Hyperbola wit

i center. (The asymptotes of the Hyper-

) It is the Sinusoidal Spiral: vn = an cos n6 for

.) It is the locus of flex points of a family of

LEMNISCATE OF BERNOULLI

i 30 with the polar

thus easily constructed.

(g) Radius of Curvature P:

(Pig. 141) R =~ . The

projection of R on the radius vector

Thus the perpendic Liar t

It^J
C, the center of c ' re.

distance. (See Spirals 2g and Jf .

)



LEMNISCATE OF BERNOULLI

a; BC = CP = 00 =

3ince £ns;le 30P = 7; alu;;::,

r
2 = (BP)

2
- (OB)

2
=

2a
2

r 4a
2 sin2 8,

LEMNISCATE OF BERNOULLI

BIBLIOGRAPHY

1
'. ,.:'-.,-..;:

Phillips, A. V. : Llnkwork for the Lemnlseate , Arn.

Math. I (1878) 386.
Wieleitner, H. : Spezielle ebene Kurven, Leipsig (IS

Williamson, B.: Plffen Ca ulus . Longmans, G

(I895).
Yates, R. C: Tools , A Mathematical Sketch and Moc
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LIMACON OF PASCAL

HISTORY: Discovered by Etienne (father of

and discussed by Roosrval in 1650.

1. DESCRTFTION:

ri - nttac led to

circle rolling upon

It is the Conchoid of a

circle where the fixed

point is on the circle.

LIMACON OF PASCAL 1'

. GENERAL ITEMS:

(a It is the Peda

Cardioid.) (Po
Is, p. 188.)

1 of a circ
nt is on the

e with respect to any
circle, the pedal is

al description, see

(b) Its Evolute is the Catacat stic f a circle for
any P light.

(0) It is the Glis
ariable triangl 3 which slid

eleote
rfeen two fixed

(a) The locus of a

nt angle whose
r of Limacons (

ly point rig
ides touch
ee G-lissett

idly a btached to a con

'nd 4)!

CleS

(e) It is the Inve se of a con
cosB +

, Para

1 respect to a

r°2
us. (The Inl^rT
a-cose + k) =

erslonld?!
"

an Ellipse ola, or Hyper-
> k). (See

(f) It is a specia Cartesian Oval

(g) It is part of

(h) It is the Trise

Folium of Descartes

he Orthopti

ctrix if k

line join!
is 38. (Not
ao aunn wh

3 of a Cardioid.

= a. The angle formed
ig (a,o) with any poin

[x- st- k- cos2

1- 4a-c

(

a + y2 - 2a )

2
= k

E
( x

2 + y
E

(origin at ingular



LIMACON OF PASCAL

(i) Tangent Con

he point A of the bar has Since T is the cent

A while the point of the r : gldly attached tc

rolling circle, TP

f the bar itself. The nor-

mals to these directions

neet in H, a point of the

irole. Accordingly, HP is

aormal to the path of P and

Lts perpendicular there is

(k) Double Generation : (See Epicycloids.) It may alsc

be generated by a point attached to a circle rolling

internally (centers on the same side of the common

tangent) to a fixed circle half the size of the roll-

LIMACON OF PASCAL

i) m

fHHr
generated by

ortic '&

o the

par=

C and F fixed
plane. CHJD is

llelogram and P

//v

s a j

ed by a

The

circle %^\/

under Cardioic

BIBLIOGRAPHY
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HISTORY: Studied by Huyge

in 1692 showed that the Nephroid is the cata-

r a cardioid for a luminous cusp. Double genera-
first discovered by Daniel Bernoulli in I725.

1. DESCRIPTION: The Nephroid I

The rolling circle may be one-
halves (3a = 2b) the radius of

a 2-cusped Epicycloid,
alf (a = 2b) or three-
the fixed circle.

Fig. 1U6

For this double generation, let the fixed circle
center and radius OT = OE = a, and the rolling
center A' and radius A'T' = A'F = a/2, the latter
Ing the tracing point P. Draw ET', OT'P, and PI" t

Let D be the intersection of TO and FP and draw t

circle on T, P, and D. This circle is tangent to

fixed circle since angle DPT = n/2 Now since PD
parallel to T'E, triangles OET' and OFD are isosc

TD = Ja.

NEPHROID

Accordingly, if P were attached tc

- the one of radius a/2 or the one

same Nephroid would be generated.

2. EQUATIONS: (a = 2b) .

x = b(3cost

3 = 6b-sin(-t;

? = 4b-sin(|). = 4b :

- 4a
2

)

3
= 108a

V

= 36b 2
.

(r/2)
5 = a3 . [sta*(|) + oos*<|)]

: 4b.sin(|).

3. METRICAL PROPERTIES: (a = 2b).

L = 24b. A = 127ib
2

.

4. GENERAL ITEMS:

i the envelop

jther Hophroid.

of a Cayley Sextio (a curve

3 of a diameter of the circle

ion: Since T' (or T) is the

Df rotation of P, the normal is

lerefore PP (or PD) . (Fig. 151

)
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PARALLEL CURVES

HISTORY: Leibnitz was the first to consider Parallel
Curves in 1692-4, prompted no doubt by the Involute
Huygens (1673).

units distan t from P me asured alon
parallel to

the given curve. There are two

For some values of 1 , a Parallel
t be unlike the given

curve in app
otally dis-

similar. NotIce the pat

of wheels wi perpendicu-
lar to their planes.

. GENERAL ITEMS:

1 normals, they



PARALLEL CURVES

(d) All Involutes of a given

:urve are parallel to each

ither (Fig. 148).

(e

allel

difference i n length Of iies of

E EXA
foil

ViPtES • Illu trat 10n 3 sele ctedfro-
(a Curv

8th

es pa rallel to the P

parallel to th

e. (See Salmon'

la are o

tral Con
the 6

(b The Astroidxf y
l =al

9k(x
2
+ J

z
) - 18

S
K + 8k

3

PARALLEL CURVES



PARALLEL CURVES

3 PARALLEL TO THE ELLIPSE:

PARALLEL CURVES

BIBLIOGRAPHY

is, Green (1879) 337;

Fig. 150

A straight line mechanism is built from two propor-

tional crossed parallelograms OO'EDO and OO'FAO. The

rhombus on OA and OH is completed to B. Since 00' (here
the plane on which the motion takes place) always bi-
sects angle AOH, the point B travels along the line 00'.

(See Tools, p. 96.) Any point P then describes an El-
lipse with semi-axes equal in length to OA + AP and PB.

circle «

along th e line 00', the instant aneous center of 1

tion of ersection C of OA produced ar

perpendl cular to 00 at B. This point C then lie

circle vith center C and radius twice OA.

The "kite" CAPG is completed with AP = PG and
CA = CG. Two additional crossed parallelograms APMJA
and PMNRP are attached in order to have PM bisect angle
APG and to insure that PM be always directed toward C.

Thus PM is normal to the path of P and any point such as

Q describes a curve parallel to the Ellipse.



PEDAL CURVES

HISTORY: The idea of positive and negative pedal curves

occurred first to Colin Maclaurin in. I7I8; the name

'Pedal 1 is due to Terquem. The theory of Caustic Curves

includes Pedals in an important role: the orthotomic is

an enlargement of the pedal of the reflecting curve with

respect to the point source of light (Quetelet, 1822).

(See Caustics.) The notion may be enlarged upon to in-

clude loci formed by dropping perpendiculars upon a line

1. DESCRIPTION: The locus Ci, Pig. 151(a), of the foot

of the perpendicular from a fixed point P (the Pedal

Point) upon the tangent to a given curve C is the First

Positive Pedal of C with respect to the fixed point.

The given curve C is the First Negative Pedal of Ci.

Fig. 151 M
lsewhere (see Pedal Equations, 5) t

between the tangent to a given curve ar

or r from the pedal point, Fig. 151(b),
corresponding angle for the Pedal Curve,

to the Pedal is also tangent to the cir

iameter. Accordingly, the envelope of tt

PEDAL CURVES

Conversely, the first negative Pedal Is then the

2. RECTANGULAR EQUATIONS: If the given curve be

f(x,y) = 0, the equation of the Pedal with respect to

the origin is the result of eliminating m between the

and its perpendicular roa th 1 ;in: my +

k is determined so that the line is tangent

For example:

The Pedal of the Parabola y
2 = 2x with re

1_
2:-:

3

3. POLAR EQUATIONS: If (r ,8 ) are

the pole:

ms r
1 + (

a
)(£j .

imple, consider the Sinusoidal Spirals

irtl .' Differentiating: n(^) = -n-tan ne



162 PEDAL CURVES

But e=e0+ f- f
= 6 - nB and thus 8 " (n +°1

Nov r Q =r.sin » =r.co S n6=a cos
11

n8

or r -a.oo B <
a+ l)An8 - a.cos a+OAf-1m) ]

Thus, dropping sub scripts, the f] rst pedal with re spect

3 me where nx = Ti+i) '

another. Sinusoidal
kth positive pedal

Spiral. The 11

is thus

table t

TIT
iat folloi

(See al

The

\r
ny

- = a
nk

cos ^1 where r

Many of the results given in the

be read directly from this last e

Spirals 3, Pedal Equations 6.)

s can

4. PEDAL EQUATIONS OF PEDALS: Let the gi

r = f(p) and let Pl

pendicular from the

tangent to the pedal

Pedal Equations):

rigin up
Then (S

per-

\7V— Pi = f p)-Pi.

,x^\ Thus, replac

pedal equati

ng p an

alogs r

n of th

1 Pi by tt

3 pedal T

eir

Kg. 153
LI = f(r) P -1

Thus consider the

f(r) =/(IrO. Hene2:

ofil
Here f

uation
rcle is

p) =/SF

\r* =y(^ or r^ap "I.

a Cardioid. (See P

Equations of su

fashion.

edal Equations 6.)

are formed in s milai

5. SOME CURVES AND

PEDAL CURVES

THEIR PEDALS:

163

Given Curve Pedal Point First Positive Pedal

Circle Any Point limacon

Circle Cardioid

Parabola Vertex Ciesoid

Parabola Eocus
TmSe

Yert

a

ex See

Central Conic EOCUS ^"ctole
Conies,

Central Conic Center r
2

. A + B-0OS28

Rectangular Hyperbola Center Lemniscate

Equiangular Spiral Pole Equiangular Spiral

Cardioid (p*a . f) Pole (Cusp)
c*;;,

s

:^
Pole r

5
. ap

3

rW<§) . a

Pole Parabola

Smusoidal Spiral
Pole Sinusoidal Spiral

Astroid: x
1

+ y
1

= a
1

Center

2r = ± a-stn28 (Quadri-

Parabola Poot of Directrix Bight Strophoid

Parabola
teK

H™°J^ Strophoid

Parabola r::pL. Tr

^clISn°
f

Cissold Ordinary Focus Cardioid

Epi- and Hypocycloids Cento- Roses



PEDAL CURVES

(Table Continued)

Given Curre Pedal Point oeltlve Pedal

Deltoid * Cusp Simple Folium

Deltoid Vertex Double Folium

Deltoid Center Trifolium

Involute of a Circle Center of Circle Archimedian Spiral

Origin tf.rt.M.A

fV = a
1*11

Origin
^n.i^)

m+n
. 0OBm, Blnn e

li/d)" —
(x2 + y2)

n/(n-i)

1/2 a Parabola).

6. MISCELLANEOUS ITEMS:

(a) The 4th negat

(b) The 4th positive pedal of r 8 cos(|)6 = a 9 wit

respect to the pole is a Rectangular Hyperbola .

(c) R'(2r £
- pR) = r

3 where R, R 1 are radii of c

PEDAL CURVES

BIBLIOGRAPHY

Hilton, H.

:

Plane Alg, Curves , Oxford (1932) 166 ff
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Salmon, G.

:

Higher Plane Curves , Dublin (1879) 99 f f

Wieleitner, H. : Spezielle ebene Kurven, Leipsig (190c

101 etc.
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PEDAL EQUATIONS

1. DEFINITION: Certain curves have simple equat

selected fixed point and the perpendicular dlst
upon the variable tangent to the curve. Such re

. PROM RECTANGULAR TO PEDAL EQUATION: If t

the pedal equation may t

and the perpendicular f

(fy )o(y-yo) + (fx ) (x-x

r
* _ [*0(fJ o +y (fy)o]

2

[(fx )
2

+ (f
7 )o

2
J

ere the peda 1 point is tal

3. FROM POLAR TO PEDAL EQUATION:

Among the relations: r = f (9 )

,

, (For example, see 6.)

origin c

PEDAL EQUATIONS

t = Hff) = P'(|f)/r and thus d6/ds = p/r g

Nov p = r.sin y, and dp = (sin T )dr + r(cos if)cH

or *£ _ /P u ar> ,di|.,

ds
_ VW l ds ; -

Thus fs
=
(^)(f) -ft _

Accordingly, K = f
2 = |^ + f^

= (-) (|E) or

5. PEDAL EQUATIONS OF PEDAL CURVES: Let the pedal equa-
tion of a given curve be r = f(p). If Pl be the perpen-
dicular upon the tangent to the first positive pedal of

i = p(— ) (see Fig. 155).



PEDAL EQUATIONS

r.
Accordingly,

<f
= if and p

2 = r-pi.

In this last relation, p and Pl play the same roles as do

r and p respectively for the given curve. Thus the pedal
equation of the first positive pedal of r = f(p) is

'f-'^l -

same fashion.

6. EXAMPLES: The Sinusoidal Spirals are \rn = a11 sin n6
|

.

» Curve
Pedal

r-^.'.ion "TOPR-^
-a r

26ln28+ae..O Reot.Hyperbola rp a
2 -7a2

-: r.einO + a . Line p = a »

-1/2 '"T^T Parabola p
2

= ar 2^>
+1/2 r-cfMi— e, Cardioid (jW <"•

1 Circle pa=r2

|

+2 '-'—

'

—
5?

(See also Spirals, 3 and

PEDAL EQUATIONS 169

3 and' corresponding pedal equations are given:

CURVE
POMT

PEDAL EQUATION

Parabola (IE = ka.) Vertex a
2
(r

2
-p
2

)
a =p

2
(r

2+ita
E
)(p

2+W!
)

Ellipse Eoous
J^

= T

Ellipse Center if - r
2

. a
2

+ b
2

Hyperbola Eoous ^=f +1

Hyperbola Center
?J!

. r
2

= a
2

- b
2

Epi- ana Hypocycloids p
2

= Ar
2

+ B
**

Astroid Center r
2
+ 5P

Z
= a

2

Equiangular (a) Spiral ' Pole p = r-sin a

Deltoid Center 8p
2

+ 9r
2

- a
2

Pole P^=rl
+B

r"1 = a
m
9
* (SaooM

1854)
Pole

a = 2:femat's Spiral,

Edwards, J.: Calculus , Macmillan (1892) 161.

Encyclopaedia Brltannica , 14th Ed., under "Cur

Dene Kurven (19c

Williamson, B.: Calculus ,



PURSUIT CURVE

PURSUIT CURVE

k -i/k, .(k+i)/k

in 1732.

1. DESCRIPTION: One particle travels along a specified

, curve while another pursues it,

its motion being always 6.1-

:ed toward the first particle
l related velocities.

3 pursuing pai Lcle

The special case when k

a(3y - 2a) 2

3. GENERAL ITEMS:

travels on a circle.

until 1921 (F. V. Mc

(b) There i

t where the pursued particl

v and A. S. Hathaway).

rf a triangle begin simultaneously to

chase one another with equal velocities. The path of

each dog is an Equiangular Spiral. (E . Lucas and

H. Brocard, 1877)

.

among which £, 7) (coordinates of the pursued particle)

ferential equation of the curve of pursuit.

2. SPECIAL CASE: Let the particle pursued travel from

rest at the x-axis along the line x = a, Fig. I56. The

pursuer starts at the same time from the origin with

velocity k times the former. Then

irves defined by the differential equa-

ire all rectifiable. It is an interesting

;stablish this from the differential

BIBLIOGRAPHY

ds = k-do- or dx + dy = k

3 follows: dx
2 + dy2 = kE [dy - y'dx + (

= k
2
(a - x)

2
(dy')

2

^V^l ,

Encyclopaedia Brit

Special
Johns Hopkins Un:

Luterbacher, J.:
, (1908) 135.

: Dissertation, Bern (1900).

izette (1930-1) 436.

Math , v 3 (1877) 175, 280.

J



T

RADIAL CURVES

HISTORY: The

1. DEFINITION: Lines are drawn from a selected point

equal and parallel to the radii of curvature of a giv

Radial of the given curve.

. ILLUSTRATIONS:

(a) The radius of curvature

157(a) (see Cycloid) is (R

R = 2(PH) = 4a

Thus, if the fixed point be

of the Cycloid (Fig.

RADIAL CURVES

J. RADIAL CURVES OF THE CONICS:

[Ellipse : b 2
> 0;

Hyperbola: b 2 < 0]

4. GENERAL ITEMS:



RADIAL CURVES

Curve Radial

Ordinary Catenary Kampyle of Eudoxus

Catenary of Un.Str. Straight Line

Tractrix Kappa Curve

Cycloid

Epicycloid Roses

Trifolium

Astroid Quadrifolium
tached to the

plane of a curve which rolls upon a fixed curve (wit

obvious continuity conditions).

BIBLIOGRAPHY

1 4th Ed., "Curves, Special."

Fig. 159

and normal at Oi as axes. Let be originally at Oi and

let T:(xi,yi) be the point of contact. Also let (u,v) b

0; 9 and 91 be the angles of the normals as indicated.

Then

3 in(9 + <Pi) - u-cos(<p +

cost? + T i) - u-slnfcp



may be expressed In terms of OT, the arc length s. Thes

then are parametric equations of the locus of 0. It Is

not difficult to generalize for any carried point.

Familiar examples of Roulettes of a point are the

Cycloids, the Trochoids, and Involutes.

2. ROULETTES UPON A LINE:

(a) Polar Equation : Consider the Roulette generated

by the point Q attached to the curve r = f(a), re-

ferred to Q as pole (with QOi as initial line), as it

rolls upon the x-axis. Let P be the point of tan-

gency and the point 0i of the curve be originally at

0. The instantaneous center of rotation of Q is P and

mgular equation of the roulette

(here the center of the fixed circle) of the Cycloidal

family:

|bP
s = A g

(r
2

- a2
)|

where A = a + 2b, and

B = 4b(a + b), as the curve rolls upon the x-axis

(originally a cusp tangent).



ROULETTES

The Cardioid rolls on "top" of the line until t

Lengths of Roulettes and Pedal Curves:

[. Let a point rigidly attached to a closed c

Lng upon a line generate a Roulette through o

ing the fixed tanrer,'.
i under one arch of

sd by a circle of r

3 Ellipse rolls

5 Pedal with reaped

3. THE LOCUS OF THE CENTER OP CURVATURE OP A CURVE,

MEASURED AT THE POINT OP CONTACT, AS THE CURVE ROLLS

UPON A LINE:

Let the rolling curve he given by its Whewell



intrinsic equation: 8 = f(f]

Then, if x,y are coordinates

the center of curvature,

are parametric equations of t

locus. For example, for the

Cycloidal family,

and the locus

1 LINK CARRIED BY A ! ROLLING UPON

the carried line

neighboring point Pi carry
le angle d f. Then if a represents

7 = QT + TQi = sir

frequently easily c

of curvature of rolli
itions of the envelope

For example, consider
circle of radius a. H

t^^cos^-,

ordinary Cycloid .



l82 ROULETTES

6. A CURVE ROLLING UPON AN EQUAL CURVE:

'Oils upo

spondlng points In contact, the

whole configuration is a reflec

(Maclaurin 1720) . Thus the

Roulette of any carried point C

is a curve similar to the pedal

with respect to Oi (the reflec-

tion of 0) with double its

linear dimensions. A simple

illustration is the Cardioid.

(See Caustics.)

7. SOME ROULETTES:

Boiling Cur-re Fixed Curre Carried Element Roulette

Circle Line Point of Circle Cycloid

Parana, Line Focus ™^ ( °rdi"

Ellipse Line Focus,
Elliptic Cate-

Hyperbola Line Focus
Hyperbolic Cate-

^psr
1

Line Pole Tracts

In

cirfi:

of
Line Center of Circle Parabola

Cycloidal

Faulty
line Center Ellipse

Line Any Curve Point of Line
Involute

Any Curve ,4ual Curve Any Point
CU

pTdaf
,11*r ^

ROULETTES

SOME ROULETTES (Continued):

Eollinf! Curve Fixed Curve Carried Element Eoulette

Parabola
Ectual

Vertex Ordinary Cissoid

Circle Circle Any Point Cycloidal Family

Parabola Line Directrix Catenary

Circle Circle Any Line
Epicycloid

Catenary Line Any Line
^Pa^abolT

a

curvature. They appear in minimal problems (soap films).

pail

irrangement of

i parallelog]
The , taken equal i

i smaller side

3 fixed to the plane, Fig. 168(a),

intersect on an Ellipse with A and B as foci. The points

C and D are foci of an equal Ellipse tangent to the

fixed one at P, and the action is that of rolling

-Ellipses. (The crossed parallelogram is used as a "quick



On the other hand, if a long bar 3C be fixed
plane, Fig. 168(b), the short bars (extended) n

Hyperbola with B and C as foci. Upon this Hyper
rolls an equal one with foci A and D, their poi

If the intersection of the shorter bars extended,
PL.-. 169(b), with wheels attached, move along the lir
the Roulette of D (or A) is the Hyperbolic Catenary.
Here A and D are foci of the Hyperbola which touches

Cohn-Vossen: Anscha
Encyclopaedia BritanTlif "Curve

pie, Berlir

3, Special

s, v 1 (18*

(1923).
Action of

Kurven, Le

s, Longman

cal Sketch

(1932) 225.

, 14th Ed.

. C. : Scd 9).

Moritz, R. E.: U. of Wash
: Curves Formed
London (1874).

. H. : Spezielle

Publ.

J22 the

alculu

... Geometric

Chucks,
Wieleitner

169 ff

.

psig (1908)

, Green (1895)

20J ff

Yates, R.

, 238.
hemati and Model



SEMI-CUBIC PARABOLA

HISTORY: ay2
= x

3 was the first algebraic curve rectifie
(Nell 1659)- Leibnitz in 1687 proposed the problem of
finding the curve down which a particle may descend unde
the force of gravity, falling equal vertical distances
in equal time intervals with initial velocity different
from zero. Huygens announced the solution as a Semi-Cubi
Parabola with a vertical cusp tangent.

DESCRIPTION: The curve is defined by the equation:

y
2

= Ax 3
+ Bx 2

+ Cx + D = A(x - a)(x 2 + bx + c)
,

which, from a fancied resemblance to botanical items, is
sometimes called a Calyx and includes forms known as
Tulip, Hyacinth, Convolvulus, Pink, Fucia, Bulbus, etc.,

SEMI-CUBIC PARABOLA

= (x-l)(x-2)(x-3) yi = y
2

= (x-l)(x-

Limit /(x-2)(x-;

^1\] x-1

. GENERAL ITEMS:

Slope at

E and Y-axes different).

- I8x)
3 = [54ax + (-fg)r

BIBLIOGRAPHY



SKETCHING

ALOEBRAIC CURVES: f(x,y) = 0.

1. INTERCEPTS - SYMMETRY - EXTENT ar<

2. ADDITION OF ORDINATES:

is often facilitated by the addltl
For example (see also Fig. I8l):

The general equation of second degree

:

Ax 2 + 2Bxy + Cy
2 + 2Dx + 2Ey + F = (l

may be discussed to 'advantage in the same manner.

Cy = - Bx - E + /(B 2
- AC)x

2 + 2(BE - CD)x + E 2
- CF, C ^

ve let Cy = yi + y E ,

SKETCHING

Here y2
2

- (B
2

- AC )x
2

- 2 (BE - CD)>. - E
2 + CF = 0,

an Ellipse if B
2

- AC < 0, an Hyperbola if B
2

- AC >

a Parabola if B - AC = 0. The construction is effects

CD - BE

CD - BE
=

B
2

- AC

inclined at Arc tan(^) 1



5. AUXILIARY AND DIRECTIONAL CURVES:

In the neighborhood of t

origin, ± donates and

given curve follows the

Hyperbola y = - — . As

The quantity e

trols the maxi

(See also Fig. 92.)

SKETCHING IS

4. SLOPES AT THE INTERCEPT POINTS AMD TANGENTS AT THE
ORIGIN: Let the given curve pass through (a,0). A line

through this point and a neighboring point (x,y) has
slope:

quantity i

1
) approaches m, the slope of the tangent



= c + d(J) + e(i)
2

+ fx ,

SKETCHING

flnity". Thus it is as

the curve, generally,
tangent. That is,

r

f(x,y) = and y = mx

= 0, then ^ = an^ = 0. But if z = -

3duees to the preccdln;-. Accordingly,

3 (1) has two infinite roots if

x
3 + y

3
- 3xy - 0.

If y * mx + k:

(l+m3 )x
3

+ 3m(mk-lh £

+ 3k( mk-l) x + k
3 = 0.

For an asymptote

:

and Jm(mk-l) =0 or k = -1.



OBSERVATIONS: Let Pn , Qn be polynomial functions of x,y
of the nth degree, each of which intersects a line in n

points, real or imaginary. Suppose a given polynomial

function can be put into the form:

(y - mx - a).Pn_ 1
+ V, = ° ( 3>

since its simultaneous solution with the curve results

in an equation of degree (n-l). This family of parallel

lines will thus contain the asymptote. In the case of

the Folium just given:

(y + x)(x
2

- xy + y
2

) - Jxy = 0,

SKETCHING

I
(2y+x)(y

3 y = x for an asymptc

infinity; the line y-mx-k=0in particular cuts

twice . Thus, generally, this latter line is an asymptc
For example:

Thus

the three possible asymptotes of a cubic me

curve again in three finite points upon a 1

the four asymptotes of a quartlc meet the c

eight further points upon a conic; etc.

Thus equations of c

pecifie irves. For example, a quartlc wit

asymptotes

x = 0, y = 0, y-x = 0, y + x =

meeting the curve again in eight points on the Ellipse
x
E + 2y

2
= 1, is:



6. CRITICAL POINTS:

(a) Maximum- minis

Dint (a,b) for which (if y"

le). (See Evolutes.)

7. SINGULAR POINTS: The nature of these points, when
located at the origin, have already been discussed to

Properly defined, such points are those which satisfy

That is, foi

Isolated ( hermit ) j

Dde (double point,



198 SKETCHING

Thus, at such a point, the slope: ^ = - [•—) has the

Indeterminate form -
.

Variations In character are exhibited in the examples

which follow (higher singularities, such as a Double

simpier'ones".
6X1 °n '

8. POLYNOMIALS: y = P(x) where P(x) is a polynomial

(such curves are called "parabolic"). These have the

following properties:

tinuous for all values of x;

line x = k cuts the curve in but one point

I there are no asymptotes or singularities;

I slope at (a,0) is Limlt[^] as x - a;

) if (x-a)
k

is a factor of P(x), the point (a,o) if

ordinary if k = 1; max-mln. if k is even; a flex if

k is odd ( i 1).
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10. SEMI- POLYNOMINALS: y
2 = P(x) where P(x) is a poly-

nomial (such curves are called "semi-parabolic"). In

sketching semi-parabolic

curves, it may be found ex-

pedient to sketch the curve

taking the square root of

the ordinates Y. Slopes at

the intercepts should be

checked as Indicated in (4).

slope at (2,0) is

11. EXAMPLES:

(a) Semi-Polynomi

-x2
) fy

2
. x(x

2
- 1) y

2
= x(l x

2
(

f = x
2
(x - 1) y

2
= x

2
(

- x
3

) f x
3

(

y
2

= x
3
(x - 1)

y
2

= x
4
(i - x

2
)
yC!

- x
3

)

f x
5

(

y
2

= (l - x
2

)

3
y
2

= x(x - i)(x - a) y
2 x

2
(



y(a
2
+ x

2)=a2x : [y = 0] . x
2y+y2

x = a
3

: [x= 0, y=0, x+y.O].

y
3
= x(a

2 -x2 ) : [x+y=0]. x
3
+ y

3 =a3
: [x + y = 0].

x
3

- a(xy + a
2)=0 : [x-0]. ( 2a - x)x2 - y

3
= : [x + y = f ].

x¥-a¥ + lV=0.
(x-y)

2
(x-2y)(x-3f) - 2a( x

3

o)(y - c)x
2

= aV.

a
2
(x+y)(x-2y) . : [fo,

x
2
(x+y)(x-y)

E
+ ax

3
( x-y) - a

2
y
3 = : [x = ± a, x-y+a= 0,x-y = | ,

x+y+f = 0].

U2
- y

2
)(y

2
- i+x

2
) - 6x

3
+ 5x

2
y + Jxy

2
- 2y

3
- x

2
+ 3xy - 1 = '

:)
5
[Cuep].

:

5
[ Osculin-

(o Singular Pointa:

a( -x)
2 =x3

[OUBp].

2)
2

= x(x-l)
2
[Dout

yj

- 2x
2
y - xy

2
+ y

2
.

= 2x
2
y + x

4
y - 2x

4

tedPt].

+ 2x
2

+ 2xy - y
2

+

[Ol

Sin]

3X - £

id].

SKETCHING

2. SOME CURVES AND THEIR NAMES:

Alysold (Catenary if a = c): aR =

Boydltch Curves (Lissajou) : fx = £

3ee Osgood's Mechanics for figures).

Bullet Nose Curve : ^s - -^ = 1

.

Cartesian Oval: The locus of pointE

i, r E , to two fixed points satisfy tl

i + m-r 2 = a. The central Conies wll]
fecial cases.

y the theory of Riemann sur

3 AMM, v J>k, p 199)

inverse of the Roses; a Cot

Folium : The

30lic Paraboloid, a curve
studies of physical optics
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SKETCHING

SOME CURVES AND THEIR NAMES (Continued):

Kampyle of Eudoxus: a
2
x
4 = b

4
(x

2
+ y

2
) :

used by

Eudoxus to solve the cube root problem.

Kappa Curve : y
2
(x

2 + y
2

) = a x .

Lame Curves : (|)" + (*)° = 1. (See Evolutes) .

Pearls of Sluze : y
11 = k(a - x) s -x

a
, where the expo-

Pirlform: b
2
y
2 = x

3
(a - x). Pear shaped. See this

Poi i nt s Spii al:

0ll ,, U of HipT

Rhod ne e (Ro es)

olds.

Semi Tr .dent:

xy2 = 3b2 (a - x)

x(y* + b
2

) - aby

x(y
2 - b

2
) = aby

xy
2 = m(x 2 + 2bx + b

2
+

b 2xy2 = (a - x)
3

c
2xy

2 = (a- x)(b - x)
2

: Urn, Goblet.

: Pyramid.

d
2xy

2 = (x-a)(x-b)(x-c) :

Serpentine : A projection of the Horopter

planes taken parallel to its axis.

TrartrijTat a^onstant distance from the I

SKETCHING

SOME CURVES AND THEIR NAMES (Continued):

Trident : xy = ax
3 + bx 2 + ex + d.

Trlsectrlx of Catalan : Identical vith the Tsc

ha usen Cubl , an, l'Hospital's Cubic.

us

Trlsectrlx of

rve resembling
Maclaurin: x(x 2 + y

2
)

the Folium of Descart
= a(y2 -

Tschirnh .usen s Cubi - S r '°0S
3

a pTofMlo
Ider

1 of t

tical with the Witch
he Horopter.

rf ASnesi

Vivian!

'

3 Cur\ e: The spherical curv

f, projections
e, Strophold,

3 x = a. si

the Hyperbo a, Le and Kappa

Oc t. (1933)

See. .M.M.: 28 (1921) 141; 38 (1931

BIBLIOGRAPHY

Echols, W. H.: Calculus , Henry Holt (1908) XV.

Frost, P.: Curve Tracing , Macmillan (I892).

Hilton, H.: Plane Algebraic Curves ,
Oxford (1932).

I
Kurve

WLc-le:



SPIRALS

i of £HISTORY: The inve

with the ancient Greeks. The famous Equiangular Spiral

was discovered by Descartes, its properties of self-

reproduction by James (Jacob) Bernoulli (1654-1705) who

requested that the curve be engraved upon his tomb with

the phrase "Eadem mutata resurgo" ("I shall arise the

same, though changed").*

. EQUIANGULAR SPIRAL:

(b) C

5 polar aal).

•
R

= -dT r

(c) Arc Length : £ = (|f)(^f) = (r-cot a) (-5%

us ai:

a = PT, where _s is measured from

!d) Its pedal
aspect to the

(e) Evolutt

5ole equal E

PC i

angle PCO = a. 0C i

first and all succe

(g) It is, Fig.

/olute

(a) The curve cuts all radii

of a Loxodrome

holding a fixe

compass), from

(h) Its Catacaustic
source at the pole are Equiangular Spirals .

(i) Lengths of radii drawn at equal angles to each

other form a geometric progression .

(j) Roulette : If the spiral be rolled along a line,

the path of the pole, or of the center of curvature

of the point of contact, is a straight line .



SPIRALS

(k) The septa of the Nautili

are Equiangular Spirals. The

curve seems also to appear

in the arrangement of seeds

in the sunflower, the forma

i

1 1
.

"
.

1
1

i
.'..•;;: i

i

".'
i I .

; lei th of an nth involute. Then all first In-

b x = (o + f)de = ce + /f(e)de,

where c represents the distance measured along

value for c for all successive involutes:

-/.'- b

co 2
/2! + =e

3
/3: + ...+[/ f(e)de,]

. (See Byerly.) Accordingly,

.,„.ei.e!, ,£,

an Equiangular Spiral .

2. THE SPIRALS: |r = ae
n

|

inclui

following: |n =* l| :
|
r = ae|

Conan bu s bu lied particu-

tract St Lll e ctan t. He prob-

• _iVdc.l Fig.

center. This suggests the descrip-

rolling without slipping

circle, Fig. 187(a). Here OT = AB = a. Let A

art at A', B at 0. Then AT = arc A' T = r = a6 .
Thus

describes the Spiral of Archimedes while A traces

i
Involute of the Circle. Note that the center of

tation is T. Thus TA and TB, respectively, are

-rmals to the paths of A and B.



le) Since r = a G and r = ae, this spiral has found
wide use as a cam, Pig. 187(h) to produce uniform
linear motion. The cam is pivoted at the pole and

kept in contact with a spring device, has uniform

(f) It ; Inverse of a Reciprocal Spiral \

(g) "The casings of centrifugal pumps , such as the
German supercharger, follow this spiral to allow a
which increases uniformly in volume with each degr
of rotation of the fan blades to be conducted to t

outlet without creating back-pressure." - P. S. Jo
18th Yearbook, N.C.T.M. (1945) 219.

SPIRALS

(h) The ortho-

graphic projection

of a Conical Helix

on a plane per-

pendicular to its

axis is a Spiral

Equiangular Spiral

(Pig. 188).

teclprocal (Varignon 1704) . ( Son

times called Hyperbolic because of its analogy to the

initial line.



SPIRALS

r all circles (cente

"IT.

6

) The area bounded t irve and two radii

pole describes a Tractrix.

is a path of a Parti

which variea as the cube of tt

Lemniscate 4h and Spirals 3f

.

5 y
E = a

2
x) (Fermat I636

e distance. (See

o (because of its

ituus (Cotes, 1722). (Similar

(a) The areas of all circular

SPIRALS 21

spect to the pole ^P
of a Parabolic

(c) Its asymptote

is the initial lin

Limit r- sin 8 =

H* 191

Limit ayC sinB _ Q

(d) The Ionic y

folute : Together j^*
""* mmmmm^,

1

I

the Whorl is made

with the curve

emanating from a circle drawn aboul

3. THE SINUSOIDAL SPIRALS: r n = a
n
co:

r 11 = a nsin n8. (n a rational number).

laurin in 1718.

* = (n + l)r»"i ~ (n + l)p

ilch affords a simple geometrical method of con-

tracting the center of curvature.



(a) it table 1 in integer.

pedals are again

Sinusoidal Spirals,

(f ) A body acted upon by a central force inversely

proportional to the (2n + 3) power of its distance

moves upon a Sinusoidal Spiral.

g) i
n Curve

-2 Rectangular Hyperbola

-1 Line

-1/2 Parabola

-1/3 Tschirnhausen Cubic

1/3 Cayley's Sextic

1/2 Cardloid

2 Lemniscate

(In connection with this family see also Pedal Equa-

tions 6 and Pedal Curves 3)

(h) Tangent Construction: Since r 11" 1 r' = - an sin nf

SPIRALS

1. EULER'S SPIRAL: (Also called Clothoi

of an elastic spring.

5. COTES' SPIRALS:
These are the paths

of a particle sub-

ject to a central

?ce proportional
3 the c

. The 1

eluded in the equa-



1. B 0: the Equian gular Spiral;

2. A 1 = the Recipr ocal Spiral;

1 a-

1
a-c

5-? ..... in n6 (the inverse of

Roses).

The figure i

The Glissett

t of the Spiral r

of a Parabola

Spiral: r-sln 28 =

American Mathematic al M:.:it,IiJ y : v 25, pp. 276-282.

Byerly, W. E.: Calculus , Ginn (1889) 133-

Edwards, J.: Calculus , Macmillan (1892) 529, etc.

Encyclopaedia Britannlca : 14th Ed., under "Curves,

Special."
Wieleitner, H. : Spezlelle ebene Kurven , Leipsig (I9O8)

247, etc.

Wlllson, F. N.; Graphics , Graphics Press (1909) 65 f f

•

STROPHOID

HISTORY: First conceived b
about 1670.

T Barrov

1. DESCRIPTION: Given the

curve f(x,y) = and the

fixed points and A. Let
K he the intersection

able line through 0. The

locus of the points Pi

and P 2 on OK such that

KPi = KP 2 = KA is the

general Strophoid.

2. SPECIAL CASES: If the c rve f =

.7 ,*

S

—

^~eS

1 circle of fixed radius



2 l8 STROPHOID

asymptote) touching it at R. The line AR through the

fixed point A, distant a units from M, meets the circle

in P. The locus of P is the Right Strophoid. For,

(0V)(VB) = (VP)
2

and thus BP is perpendicular to OP. Accordingly, angle

KPA = angle KAP, and so

KP = KA,

the situation of Fig. 196(a).

. This Strophoid, formed when f = i

identified as a Cissoid of a line and a circle. Thus,

Fig. 197, drav the fixed circle through A with center

0. Let E and D be the intersections of AP extended wi

the line L and the fixed circle. Then in Fig. 197(a):

ED = a-cos 2<f sec 9

and AP = AK = 2a-tan e.sitif = 2a-cot 2cfsin <j .

Thus AP = ED,

STROPHOID

3- EQUATIONS:

Fig. 196(a), 197(a):

Fig. 195(h):

Fig. 197(h):

4. METRICAL PROPERTIES:

A (loop, Fig. 196(a)) = a
2
(l + p.

5. GENERAL ITEMS:

1 It is the Pedal of a Parabola with respect

x(x a)
s

2a x

x
*

a + x)

(c) I t is a s pecial
Kierc id.

graph ic proje f

Vivia ni's Cur ve.

(e) Ihe Carpe nter's
the

ation of the Ci

(see Cis ).

with one edge passir g
gh the f

point B (Fig. 198)
while
moves along the line



TRACTRIX

HISTORY: Studied by Huygens in 1692 and later by Leibni
Jean Bernoulli, Liouvllle, and Beltrami. AI30 called
Tractory and Equl tangential Curve.

Encyclopaedia B

BIBLIOGRAPHY

mica , 14th Ed., under "Curves,

ionrs de Geometrie Analytlque , F

Fig. 199

1. DESCRIPTION: It is the path of a particle P pulled by
an inextensible string whose end A moves along a line.

The general Tractrlx is produced if A moves along any
specified curve. This is the track of a toy wagon pulled
along by a child; the track of the back wheel of a

bicycle.

e P: (x,y) b

along the x

always towar
-axis. Then, s

d A,

mce
S

the

lng

1

'
y

t-T^ - y
2

|



2. EQUATIONS:

s = a -In se<

. METRICAL PR<

A =
' [/" y

E dy (from pa

she™) ]°.

the circle

(V, = half t le volume of th sphere of

(2* = area o the sphere of radius a)

.

(e) Schiele' s Pivot : The solution of the problem of

the proper form of a pivot revolving in a step where
the wear is to be evenly distributed over the face
of the bearing is an arc of the Tractrix. (See Miller
and Lilly.)

f) The Tractrix is utili
See Leslie, Craig.)

g) The mean or Gauss cur
erated by revolving the ci

' the irface

he arithmetic mean of maximum and minimum curvatur
a point of the surface) is a negative constant

1/a). It is for this reason, together with items
) and (d) Par. 3, that the surface is called the

". It forms a useful model in the stud
Wolfe, Eisenhart, G-raustein.)of geometry. (Se

) Prom the primary definition (see figure), it is

orthogonal trajectory of a family of circles of
istant radius with centers on a line.



224 TRACTRIX

BIBLIOGRAPHY

Craig: Treatise c

Edwards, J.: Calc

Eisenhart, L. P.

n Prelections,
ulus, Macmillan (1892) 357-
Differential Geometry, Ginn (1909)

Encyclopaedia Bri

(1935).
Leslie: Geometric
Miller and Lilly

Wolfe, H. E. : Nor

tannica: 14th Ed. under "Curves,

Differential Geometry, Macmillan

al Analysis (1821).
Mechanics, D. C. Heath (1915) 285.

r Plane Curves, Dublin (1879) 289.
'

. , T r J ( 1

1

' )

TRIGONOMETRIC FUNCTIONS

: Trigonometry seems to have been developed, vi
certain traces of Indian influence, first by the ArabE
about 800 as an aid to the solution of astronomical pi

lems. Prom them the knowledge probably passed to the
Greeks. Johann MUller (e.1464) wrote the first treatiE
De triangulis omnimodis ; this was followed closely by
other

. DESCRIPTION:

Y

\J
Y

\ 1
\

Y

/I

/

/\ I \

.

vy \/ J rr
/ \

j:ttlr. / \ \ WS - 1/

2. INTERRELATIONS:

(a) Prom the figure: (A + B + C = 71)



TRIGONOMETRIC FUNCTIONS

(b) The Euler form :

(o) A Reduction Formula :

c = 2cos(k-l)x-cosx - cos(k-2)x

c = 2sin(k-l)x-cosx - sin(k-2)x

Thus to convert from a power of the sine or cosi

cos
n
x =(^~) , expand and replace z

k
+"z

k by 2-c

sln
n
x = (~r^)

n
, expand and replace z

k
- z

k
by 21-

TRIGONOMETRIC FUNCTIONS

(1 - cos Sx)

+ 3)

2 (1

. 3 (3ein x - sin 3x) (c os3x +

. 4 (cob kx

s ( Bin 5x- 5sin Jx+lC

l+oos 2x + 3)

(c os 5x+5c

8

ob 3x+10cos x)

16 16

(e)

2 sin kx

n + 1
n

2
x smf

n + 1
111 T

sin -

(f) From the Euler form given In (b) :

3. SERIES:

3 15 315 2835
'

"
3

" i+5 " 9^5 " V725
+ "" :



TRIGONOMETRIC FUNCTIONS

, j. £. 5x*
,

61 Te 277 a

360 15120

. £ *. L± .JL. +
1-5'5

. *L .

+ 5? " 5? 7x7 " •••'

arc CBCX = I + I .
1 + ill . _1_ + ill5 . J_ + .^ x2>

. DIFFERENTIALS AMD INTEGRALS:

/«*«— * l-«1

/— --|o»x -cot,
|

= m|tm f|.

TRIGONOMETRIC FUNCTIONS

5- GENERAL ITEMS:

(a) Periodicity : All trigonometric func"
periodic. For example:

y = A'sin Bx has period: 4r and ami

leflned by the differential

Its solution is y = A-eos (Bt +9), in which the
arbitrary constants are

A: the amplitude of the vibration
,

9 : the phase-lap: .

(c) The Sine (or Cosine) curve is the orthogonal pro -

jection of a cylindrical Helix , Fig. 203(a), (a curve
cutting all elements of the cylinder at the same
angle) onto a plane parallel to the axis of the
cylinder (See Cycloid 5e.)

Fig 203(b). Let the intersecting plar



TRIGONOMETRIC FUNCTIONS

1 cylinder: (z-l) £ + x
2 = 1

oils

A worthwhile model of this may be fashioned from s

roll of paper. When slicing through the roll, do r

flatten it.

airplane travels on a

great circle around the
earth, the plane of the

arbitrary cylinder cir-
cumscribing the earth
in an Ellipse . If the
cylinder be cut and laid
flat as in (d) above,

leriod of

9 Theory : Trigo-

This is exhibited 3

Fig. 205.

TRIGONOMETRIC FUNCTIONS

f Prentice-Hall.)



TRIGONOMETRIC FUNCTIONS

Hurler Development of a given function is the
jsition of fundamental Sine waves of ir.croasir
lency to form successive approximations to the
Lbration. For example, the "step" function

BIBLIOGRAPHY

TROCHOIDS

HISTORY: Special Trochoids were first

in 1525 and by Roemer in 1674, the lat

with his study of the best form for ge

onceived by Diirer

r teeth.

1. DESCRIPTION: Trochoids are Roulette - the locus of a

1 curve that roll upon
'ixed curve. The r

rer sally applied Epi-

md Hypotrochoids
jath of a point r gidly

ittached to a cir le

-oiling upon a fi> ed

2. EQUATIONS:

;os(mt/b) x = n-cos t + k-cos(nt/b)

iln(at/b) y = n-sin t - .k- S in(nt/b)

- and Hypocycloids if k = b)

.



3. GENERAL ITEMS:

i line (Pig. 208):

(c) The Ellipse is the Hypotrochoid where a = 2b

.

Consider generation by the point P [Pig. 209(a)] .

Draw OP to X. Then, since arc TP equals arc TX, P was

originally at X and P thus lies always on the line OX.

Likewise, the diametrically opposite point Q lies al-

ways on 0Y, the line perpendicular to OX. Every point

of the rolling circle accordingly describes a diameter

of the fixed circle. The action here then is equiva-

lent to that of a rod sliding with its ends upon two

perpendicular lines - that is, a Trammel of Archi-

medes. Anjr point F of the rod describes an Ellipse

whose axes are OX and OY . Furthermore, any point G,

rigidly connected with the rolling circle, describes

an Ellipse with the lines traced by the extremities

of the diameter through G as axes (Nasir, about I250)

.

the diameter PQ envelopes an Astroid

TROCHOIDS

209(b)

e Double

and tr

Generation
If the small

RX pas
smalle

ses alwa ys through
. Consider

a

diamet er. Sine e SO is a
passes through a

is a L i f

rollin
I circle "described

-Hi

Envel°Pe Roulette: Any line rigidly attached to
the rolling circle envelopes a Circle . (See Llmacon
3k; Roulettes h; Glissettes 5.)

(e) The Rose Curves: r = a cos ne

ircte
r - a sin nfl

are Hypotrochoids crenerateri hy » , of radius

2 ( n + !)
rolling within a fixed 01 rele f radius

;
units distant from its center. (First noticec

'di in 1752 and then by Ridolphi in 1844. See



aa -tip, P = 2(a

Thus in polar co<

e) =2(a . b) oo S
—^-e.

I
(f<'engelly: Theoretical Naval Arc

study of ocean waves).
Edwards, J.: Calculus , Macmlllan (1892) 343 tt

.

Lorla, G. : Spezlelle algebralsche und Transzendente

ebene Kurven , Lelpsig (1902) II 109

.

Salmon, G. : Higher Plane Curves , Dublin (1879) VII.
Williamson, B.: Calculus , Longmans, Green (1895) 3^8 f

philosopher, and somnambulist), appointed profes
Mathematics at Bologna by Pope Benedict XIV. Tre
earlier (before 1666) by Fermat and in 1703 by G

Also called the Versiera.

, VI (1939) 211; VIII (19U) 135 a:

XLTI U9k6) 57.1

1. DESCRIPTION: A sec

on the fixed circle c

ant OA through a selecte
uts the circle in Q. QP

The
P
path°of

la

p is the"

diameter OK, AP paralle



WITCH OF AGNESI

3. METRICAL PROPERTIES:

(a) Area between the

times the area of the

(b) Centroid of this

(c) Vx = te
s
a
3

.

(d) Flex points occur

: (0,f).

. .;•;..!. <,i. P I

1

.... '• i-

-oduced by doubling the ordinate s of the Witch

irve was studied by J. Gregory in I658 and use

3ibnltz in 1674 in deriving the famous express

Edwards, J.: Calculus , Macmillan (1892) 355-

Encyclopaedia Britannica : 14th Ed., under "Cu

noulli: 1,1

1,93,145,152,175,206,22

ant: 108,175

0,149,151,152,155,

4,223,233,255

2,143,161,165,185,218,2



npass Construction: 128

ichold: 51-53:50,108,109,120,

k: 3>+-3 ;37, 38,39

files: 36-55:20,78,79,87,88,

L12,130, 131, 138,11*0, H9,156,

163, 173,1°?, 189, 195, 203

capital's: 203,205

tola: 56-59:89,186,197

onal Curves: 190

ilnant: 59,57,76,189

Double generation: 81

Duality: 1*8

Durer: 175,233

"e": 93,9**

Elastic spring: 215

Ellipse: 36-55:2,19,27,63,78,79,

88 , 109 , 111 , 112 , 120 , 139 , 11*0

,

11*9, 157, 158,161*, 169, 173, 178,

179, 180, 182, 183,181+, 189, 195,

202, 299, 230,231*

Elliptic Catenary: 179,182,181*

i tare lopes: 75-80;2,3,15, 50,72,

'('3,85,87,91,108,109,110,111,

112, 135, 139, l'* 1*, 153, 155,160,

161, 175, 180, 181, 23 1*, 235

180. 161, 181*, 197, 207, 213, 215, Epi: 203

Epicycloid: 81-85;

'

126,139,152,163,1

ter of: 5 1*, 55,11*5,150,213 180,182,183

Cusp: 20,27,90,192,197,199,200, Epitrochoids: (see

Equation of second

Cylinder: 229,230 188

Cycloid: 65-70;l,l*,65, 80,89, 92, Equiangular Spiral

122,125,126,136,137,138,139, Equiangular)

172,17l*,176,177,179,l80,l8l, Equitangential Curv

182,183, (see also Epicycloids

Eudoxus, Eippopede

Kampyle of

da Vinci, Leonardo: 170 Euler: 67,71,82

Deltoid: 71-7'*; Bk,126,lk0,16k

,

Euler form: 9>*,ll6,

Lutes: 86-92:2,5,15,16,19,20, Hathaway: 171

7,66,68,72,79,85,135,139,11*9, Helix: 69,203,20

?2,155, 155,173, 187, 197,201+, Helmet: 201*

mential Curros: 93-97;20 Hessian 99

oat: 237 Hippias, Quadrat rix of: 201*

toiler
1 : (eeespiraiB

'
Hippopede of Eud

Hire: 138,175

oxus: 203

c point: 10,56,87,90,196,198 .ubic: 203,205

Huygene: 15,66,6 7,86,135,152,

t. of Descartes: 98-99;193,

Hyacinth: 186

um: 72; (Simple, Double, Hyperbola: 56-55 19,27,63,78,

s: 1,69,81,137,233

no's Lemniscate: 203

8,139,11*9,216

79,88,101,112,115,116,129,130,

159 , 11+0, 11+1+, 11+9, 157, 163, 161*,

168, 169, 173, 182, 181*, 189, 195,

85,87,125,126,155,156,161+,

176,182,183,208,209,222

Isolated point: 192,197,200,



Kakeya: 72 Mercator: 118,230

Kappa Curve: 17!+ ,?0'+,205/222 Minimal Surfaces: 13,183

Monge: 56

Kierold: l)+l-ll+2;29,33,219

Kite: 1 58 Morley: 171

Lagrange: 15,67,75 Motion, line: 81+, 132, 158,210,
Lambert: 113 23>+

Lame' Curve: 87,l6l+,20l+

Law of Orowth ( or Decay) : 91+ Multiple point : 20,192,197,199,

Leibnitz: 56,68,155,175,186, Mapler: 93

221,238 Hapkin ring: 17

Masir: 23I+

1)+7;9,10,63, 150, 157, 163, 168,

Neil: 186

nephroid: 152-15l+;17,73,8l+,87,

Light rays: 15,86

Limacon of Pascal: 1U8-151;5,7, Hewton: 28,51,56,60,67,68,81,

16,31,108,110,121,130,139,11+0, 175

163,231+, 235 Nicomedes, Chonchoid of: 31-33;

Line motion: 8>+, 132,158,210,23)+ 108,11+2

Linkages: 6,9,25,51,152,1 K6, 151, node: 192,197,199,200

158,183 normal Curve: 95,96
Liouvllle: 221 normals: 91 ,

"urves)

UrT6

Optics: 1+0,203

Orthogonal trajectory: 223

Orthoptic: 3,73,138,139,11+9
Loria: 186

Osculinflexion: 198, 195 , 1-00 , 202

Maclaurin: 11+3,160, 163,182, 205, Ovals: 131,11+9,203

91,111,112,129,136,138,139,
11+0,11+9, 156, 157, 161, 163,161+,

168,169,173,176,162,183,187,

urve: 17O-I7I

Peaucelller cell: 10,28,52,131 Reflection- (see Caustics
Pedai Curves: 160-165)5,9,15,29,

65, 72,79, 85,136,138,ll+l+,ll+9,

167,179,182,203,207,209,211+,

Pedal Equations: l66-l69jl62,

177,213

Bhumb line: 118

Hlccati: 113

Rldolphl: 235

Eoberval: 65,66,11+8

Eoemer: 1,81,233

pin^fSe
2* Eooes: 85, 163,17!+, 216,235

Piriform: 201+ Roulettes: 175-185;13,29,6

Points, Singular: 192,199,200,

79, 110, 135, 136, ''07, 212,"

235,235 (see Trochoids)

Polars: l+l,te,l+3,l+l+,133

Polynomial Curves: 61+, 89, 19!+, 198
Polynomial Curves, Semi-: 61,87,

L^property: T



2kk INDEX

Singular points: 62,192,197, Sturm: 26

199,200,202 Suardi: 235

Sketching: 188-205:155

Slope: 191 Tangent Construction: 3,13,29,

Blot machine: 96 32, kl, hk ,'*6,6C, 73, 35, 119,139,

Sluze, Pearls of: 201+ H5, 150, 153, l68,21k,222

Snowflake Curve: 106 i'angeritB at origin: 191,192

Soap films: 13,183 Tautochrcne: 67,85

1 -06-216 Taylor: 75

Spirals, -:erquem: 160

Archimedean: 20, 156,16k, 1-59, :c,~.xs ; 9,20k

Cotes'; 72,169,215,216 137, 17k, 182, 20k, 212

Equiangular: 20,63,87,126, Trains: 2k

136,163,169,171,173,206, Trajectory, orthogonal: 223

207,208,209,211,216 Trammel of Archimedes: 3,77,108,

Euler: 136,215 120,23k

Fermat's: (see Spirals, Para- Transition curve: 56,215

Hyperbolic: (see Spirals, Trifolium: ( see Folium)

Eeciprocal) Trigonometric functions: 225-232

Parabolic: 169,212,213 Trisection: 33,36,58,205

Poinsot's- 20k Trisectrix: lk9, 163,203, 205

Eeciprocal: 182,210,211, Trochoids: 23?-236;120,122,158,

212,216,222 139, lk8, 176, 20k

Sinusoidal: 20,63, 139, IkO, Trophy: 20k

Ikk,l6l,l62,l63,l68,203, Tschirnhausen: 15,152,203,203,

213,21k 21k

Spiric Lines of Perseus: 20k Tulip: 186

219 Varignon: 211

Stubbs: 127 Vibration: 68,230,231,232


